

\qquad
路

．
\square

SR

INSTITUTE OF ACTUARIES'

TEXT-BOOK

OF THE

PRINCIPLES OF INTEREST,

LIFE ANNUITIES, AND ASSURANCES,

AND THEIR PRACTICAL APPIICATION.

PARTI.

INTEREST (Including ANNUITIES-CERTAIN),

> NEIV EDITIO.V.
[REVISED.]
BY
RALPH TODHUNTER, M.A., FORAIEKLY FELLOW OF CLARE COLLEGE, CAMBRIDGE, FELLLUW OF THE INSTITUTE OF ACTUARIES, actuary and secketary of the university life assurance society.

Published by the Authority, and under the Superintendence, of the Institute.
LONDON:

Charles \& EDwin lalyton, farringdon street, e.c.

$$
1915 .
$$

$$
3 \times 386
$$

I 34

PREFACE.

The Council of the Institcte of Actuaries, while recognizing the skili with which the first Text-Воок, Part I., on Interest, had boen writteu, felt that in some ways it might be made more suitable for the students for whom it was intended. When, therefore, a new edition was needed, they laid the matter before Mr. Toduunter, requesting him to consider it from this point of view, giving him full liberty to act as he might think best. He formd it desirable to re-write the volume, and has accordingly done so.

It is hoped that the following pages, including in due proportion theoretical explanation and practical example, will prove increasingly useful to all whose duty or pleasure it may be to apply themselves to this important subject, and that Mr. 'Tonhunten's ability and care will carn the gratitude which they surely merit.
C. D. H.

24 June 1901.

INTRODUCTION BY THE AUTHOR.

In the preparation of a New Edition of the Text-Boon, Part I., it has been found necessary to re-write the work. The general Theory of Compound Interest has been presented in a form which will, it is hoped, afford a comprehensive view of the subject, and special attention has been given to the applications of the Theory to practical financiai problems. For the convenience of those students who have no previous knowledge of the methods of the Infinitesimal Calculus, a chapter on the elements of this subject has been included.

In the compilation of the rolume assistance has been derived from numerous papers and notes in the Journal, and from various treatises on Compound Interest-more especially from Mr. George King's Theory of Finance, to which no subsequent writer conld fail to be greatly indebted-but, in accordance with precedent, references to authorities have not been given.

The author takes this opportunity of acknowledging his indebtedness to the Council of the Institute for the uritical examination which they have given to the work
during its progress, while according him entire liberty in the treatment of the subject. He also offers his best thanks to Mr. J. E. Faulks, B.A., for many valuable snggestions, and to Mr. A. Levine, M.A., for assistance in the revision of the earlier proof-shects of the two concluding chapters and other parts of the work.
R. 'T.

London, 12 June 1901.

T'нe necessity for another edition having arisen, the book has been revised by the author in consultation with Mr. W. Palin Elderton and Mr. H. M. Trouncer, M.A., to whom the author is much indebted.
R. T.

London, July 1915.

TABLE OF CONTENTS.

CIIAPTER I.

Definitions and Elementary Propositions.

Art. Paces
1-3. Interest, Principal, and Rate of Interest 1
4-10. Nominal and Effective Rates of Interest 2
11. Force of Intercst 5
12. Recapitulatory 5
13-14. Amount of a given Principal 5
15. Amount in a Fractional Period (
16-18. Discount and Present Value 7
19-20. Nominal and Effective Rates of Discount 7
21-22. Present Value of a given Sum Due 8
2:3-24. Connection between Interest and Diseount 9
25. Commercial Discount 10
$24-27$. Identity of Forees of Interest and Diseount 11
24-30. Relatious between i, d. δ, and v 12
31. Calculation of Numerical Values 13
32. Recapitulatory 14
33. Varving Rate of Interest. 1.
CHAPTER II.
On the Solution of Probleys in Compound Interest-Practical Examples-Equation of Payments.

1. General Classification of Problems 18
2. Valuation of Redeemable Security from First Principles 18
3. Equation of Value 19
4. Effective Rate realized on a criven Transaction 19
5. Interchangeability of Nominal and Effective Rates 20
6. Examples-Period in which a given Principal doubles itself-
Accumulation in Consols 21
7-9. Approximate Formula for Equaterl Time. 21
7. Example of Equation of Payments 27

CHAPTER III.

On the Valuation of Annuities Certain.

Art. Page
1-7. Definitions 24
8. Notation 29
9. Self-evident Relations 30
10-15. Formulas for Amounts and Iresent Values 30
16. Amounts and Present Values for a Fractional Periocl 32
17-18. Formulas in terms of i, j, and δ 33
19. Present Values of Perpetnities 36
$2)^{2}-21$. Case in which frequeney of Payment and frequency of Conversion are the same 36
22. Relation between Annuities payable yearly and p times a year 37
23. Use of Alternative Formulas 37
24. Annuity payable every r years 38
25. Fines for renewal of Leases 39
26. Varying Annuities 40
27-32. Valuation of simple Varying Annuities-Inereasing Annuity 40
33-35. General type of Varying Amuity 43
CHAPTER IV.
Analysis of the Annuity.

1. Introductory 45
2. Sufficiency of $a_{\bar{n} \mid}$ to provide successive Payments 45
3. Separation of Payments into Principal and Interest 46
4-6. Relation between successive Principal-Repayments 48
4. Repayment of Loan by Ammity 50
5. Construction of Repayment Schedule 50
0-10. Operation of Sinking-Fund 56
11-14. Ammity at Remunerative and Reproductive Rates 57
15-16. Analysis of Varying Annuity 64
CHAPTEL: V.
On the Vhleation of Debentures Anj) otier Securities- Miscellaneoes Problems
Art. Page.
1-2. Nature of (reneral Problem fi6
6. Valuation of lredeemable Securities 66
7. Valuation of Redeemable Securities- Preliminary Considera- tions 67
5-9. Vormulas for Value of Redeemable Security 65
10-11. Debentures hought at a Premimm or Discount 73
12-17. Valuation of Vepresentative Securities 74
18-19. Valnation of Securities with Acermed Dividend 78
20-22. Methods of dealing with a Redeemable Security 81
8. Valnation of a Debenture with allowance for Income Tax 83
24-26. General Formulas for Valnstion of Securities redecmable by lustalments St
9. Examples. 87
10. Distinction between value of entire Loan and value of individual Bond 88
23-30. Loan repayable by Cumulative Sinking-Fund 89
11. Repayment-Schedule for Loan repayable by drawings 93
12. Option to purchase in the market 94
13. Viluation at Remunerative and Reproductive Rates 95
14. Examples of Conversion and Consolidation of Loans 96
CHAPTER VI.
On the Determination of the Rate of lnterest in yolved in a glven Transaction.
15. Nature of the Problem 101
16. Preliminary Considerations 102
17. Methods of Solution. 102
18. Approximation by direet Expansion 103
19. Application to Redcemable Security 104
20. General Method of App:oximation by Expansion with the aid of Tables 106
7-9. Application to Annuity 107
10-11. Application to Redeemable Security 109
21. Approximation to Force of Interest 111
13-14. Approximation by First-Difference Interpolation 112
22. Appplication to Ammity 113
16-17. Application to Redeemalle Securtty 114
23. Table of Approximate Formulas 118
24. Method of allowing for lncome-Tax. 118
25. Illustrative Examples 120

CHAI'TER VII.

Capital Revemption Assuraxces.

ART Page
1-2. Nature and uses of Capital Redemption Assurances 130
3. Notation 131
4. Formulas for Single and Amnail Premiums 131
5. Methods of calculating Ammual Premimms 132
6-7. Formulas for m-ly l'remimme 133
8. Definition of Polic \bar{y}-Vialue 136
9. Formulas fou Poliey-Talues 134
10. Effect of a Reduction in the assmmed Rate of Interest 137
11. Definition of, and Formulas for, Paid-up Policy 138
12. Practical Examples 139
19 Assumption of a Decreasiug Late of Interest 142

CHADTER VII.

Interest 'Iables.

1. Introductory 144
2. Tabulated Functions 144
3. Points to be considered in estimating the l'ractical Utility of a Tisble 145
4. Mr. Peter Gray's 'lable of $\log (1+i)$. 147
5-7. Defintion and Discussion of the Continued Process of Con- struction 14.7
5. Verification by Summation 148
6. Verification by Differences 149
7. Methods of tabulating $(1+i)^{n}, v^{n}, s_{n}^{-}$alld a_{n}. 150
8. Methods of tabukating $\frac{1}{s_{n \mid}}$ and $\frac{1}{a_{n}}$. 151
9. Metliod of tabulating I'an. 151
10. Methods of tabulating $(1+2)^{r}, 2 \cdot \frac{r}{m}, s_{n \mid}^{(m)}$:1nd $a_{n}^{(n i t)}$. 152
11. Uses of a Table of $\log \frac{e^{x}-1}{x}$ 153
15-16. Examples. 153
12. List of more important Table's. 157

CIIAPTER IX.

Formulas of tife Infinitesimat Calcults

ARt. Pagr

1. Introductory 162
2-4. Variable and Constant Quantities 162
5-8. Functions, Variahles, and Continnons Fimetions 163
2. Geometrical representation of Continuous Function 164
10-11. Geometrical representation of a Finction-Examples 161
3. Distinction between Caleulus of Finite Differences and Infinitesimal Calculus 166
13-14. Increments and Differential Coefficients 167
4. Geometrical representation of Differential Coefficient 168
5. Deductions from the magnitude and sign of Differential Coeilicient 168
6. liules for Differentiation 169
18-19. Differentiation of Elemenfary Functions. 172
20-22. Suceessive Differentiation 175
7. Maelaurin's and Taylor’s Expansions 175
8. Maxima and Minima 177
9. Partial Differentiation 178
26-27. Nature of Definite lintegral 179
10. Geometrical Representation of Definite Integral 1 so
11. Application to Theory of Compound Interest 181
12. Evaluation of Definite Integrals 181
31-33. Indefinic: lntegration 182
13. Differentiation of a Definite Integral 181
$3 \check{5} 37$. Approximate Evaluation of Definite Integrals. 185
CHAPTER X.
Applications of the Calculus of Finite Differences and tie Infinitesimal Calculus.
1-2. Introductory 191
14. General Formula for the Fore of laterest 192
4-j. General Formulas for the Amount and Present Value of a Unit-Examples 193
6-7. General Formulas for the Amomit and l'resent Value of an Amuity-Examples 196
8-10. Formulas for the Amount and I'resent Value of a Varying Ammity-Examples 198
11-12. Formula for the Present Value of an Inereasing Ammity - Example 202
15. (reneralization of the Method of Art. 8, Chap. V1 203
16. General Theory of Interpolation 205
15-17. Application to Determination of the Rate of Interest- Examples 206

TABI,ES.

No. Page.
I. Amount of 1: viz., $(1+i)^{n}$ 211
II. Present Value of $1:$ viz., v^{n} 213
III. Amount of 1 per Anmum : viz., s_{n} 215
1V. Present Value of 1 per anmm : viz., a_{n} 217
V. Ammity that 1 will purchase: viz., $\left(\alpha_{n}\right)^{-1}$ 219
VI. Valnes of $d, v, j_{(2)}, j_{(4)}, \delta$, and $\log _{10}(1+i)$ corresponding to given values of i 221
VII. Values of $\frac{i}{j(p)}$ for given values of i and p 221

INSTITUTE OF ACTUARIES' TEXT-BOOK.

PART I.

THE THEORY OF COMPOUYD INTEREST AND ANNUITIES-CERTALN.

CHAPTER I.

Definitions and Elementary Propositions.

1. Interest may be defined as the consideration for the use of capital, or as that which is earned by the productive investment of capital. In theory, it is not necessary that the invested capital and the consideration for the use of it slould be expressed in terms of one or the same commodity, but in practice it is usual and convenient to express both in terms of some one unit; in the investigations that follow, it will be assumed that both are expressed in terms of a unit of money, without specification of the particular currency to which that unit belongs.
2. The invested eapital is called the Principal. The consideration for the use of capital usually becomes due at stated intervals, and, being itself of the same nature as capital, may be employed, when recerred, as capitai. in the Theory of Compound Interest, it is assumed that the consideration will not be allowed to remain idle, but will immediately bo productively invested.
3. The total interest earned on a given principal in a given time will obviously depend on (1) the griven principal, (o) the interest contracted to be paid for each stated interval in respect of each unit of principal, (3) the given time. The second of these quantities is, in the strictest sense, the Rate of Ixtriest, and in some inrestigations it will be found convenient to take this quantity-the interest contracted to be paid in respect of each unit of prineipal for each stated interval-and the number of such interrals in the given time as data. The expression "the rate of interest" is, however, more generally used with reference to a year, the accepted unit of time in the 'Theory of Finance, and it is so used to denote:-
(1) the rate per unit per annum at which interest is calculated for each stated interval for which interest is contracted to be paid, or, in other words, the interest that would be earned on each unit of principal in a year if the interest received at the end of each stated interval were not itself productively invested;
(2) the total interest earned on each unit of principal in a year on the assumption that the actual interest as received at the end of each stated interval is invested on the same terms as the original principal.
4. It is obvious that, except in the case when the stated interval for which interest is to be paid is a year, these two senses in which the expression "the rate of interest" is employed represent two different things. To take a simple example, let it be supposed that a principal of 100 is invested in consideration of the payment of $2 \frac{1}{2}$ at the end of each half-year. In this case the rate per unit per anmum at which interest is calculated, or the interest that would be carned in a year on each unit of principal if the interest received at the end of the first half-year were not productively invested, is 05 , whereas the total interest earned on each unit of principal in a year on the assumption that the $2 \frac{1}{2}$ received at the end of the first half-year is invested on the same terms as the original principal (i.e., in consideration of the payment of $2 \frac{1}{2}$ per-cent on the $2 \frac{1}{2}$, or $\cdot 0625$, at the end of each half-year) is $\cdot 050625$. It is convenient, therelore, to distinguish between the two senses in which the expression "rate of interest" is employed by the use of distinct expressions and distinct srmbols.
5. The rate per unit per annum at which the actual interest for each
stated interval is ealenlated when that interval differs from a year，or，in other words，the interest that would be eamed on each unit of principal in a year if the interest as received were not productively invested，is alled the Nomtril Lise of Isterest，and will be distinguished by the symbol j ．The frequency with which interest is actually parable，or ihe stated interval of payment，is delined by the expressions＂payable half－yearly，quarterly，or m times a year＂（as the case may be）， ＂eonvertible half－yearly，quarterly，monthly，de．＂，or＂with half－ yearly，quarterly，monthly，\＆e．，rests．＂Thus，when interest is said to be at the nominal rate of \bar{j} per－cent per ammum payable （or convertible）half－yearly，or at the nominal rate of \bar{y} per－cent per ammm with half－yearly rests，it is meant that $2 \frac{1}{2}$ is to he paid at the end of each half rear for cach 100 owing at the beginning of the half year．The frequeney of conversion of a given nominal rate may lee denoted by means of a suftix placed in brackets at the lower right－hand conner of the symbol representing the rate．Thus $j_{(m)}$ denotes anmminal rate j convertible m times a year．

6．The total interest eamed on 1 in a year，on the assmmption that the actual interest（if receivable otherwise than yearly）is immentiately in⿻丷木丨⿱⿰㇒一乂心，as at becomes due，on the same terms as the original prineipal，is called the Effective Liste of Ixterest，and will be distinguished by the symbol i ．

7．To every nominal rate of interest，convertible with a given frequeney，there is a corresponding effective rate，for the total interest carned on each unit of principal in a year－in other words，the effective rate of interest－may be found by aceumulating a unit，on the assumption of compound interest，at the given nominal rate．Thus，if the nominal rate be j ，convertible m times a year，an original unit of prineipal， torether with the interest upon it at the end of the first $\frac{1}{m}$ th of a year， will amount to $1+\frac{j}{m}$ ．By assumption the $\frac{j}{m}$ is immediately invested on the same terms as the original unit of principal，so that the interest due at the end of the second $\frac{1}{m}$ th of a year will be $\frac{j}{m}\left(1+\frac{j}{m}\right)$ ；hence the original unit with interest will amount to $1+\frac{j}{m}+\frac{j}{m}\left(1+\frac{j}{m}\right)$ or $\left(1+\frac{j}{m}\right)^{2}$ ．Similarly，in cach $\frac{1}{m}$ th of a year the amount of the original
unit with interest at the beginuing of the interval will be increased in the ratio of $1+\frac{j}{m}$ to 1 . Consequently, at the end of a year, the unit of prineipal with interest will amount to $\left(1+\frac{j}{m}\right)^{m}$. The total interest. earnect on each unit of principal in the year is, therefore, $\left(1+\frac{j}{2 n}\right)^{m}-1$. In symbols,

$$
\begin{equation*}
i=\left(1+\frac{j}{m}\right)^{m}-1 . \tag{1}
\end{equation*}
$$

whenco

$$
\begin{equation*}
j=m\left\{(1+i)^{\frac{1}{n}}-1\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
m \log \left(1+\frac{j}{m}\right)=\log (1+i) \tag{3}
\end{equation*}
$$

8. From these equations the effective rate of interest corresponding to a given nominal rate convertible with a given frequency, or, conversely, the nominal rate convertible with any required frequency corresponding to a given effective rate, may be calculated.
9. It will be observed that if two of the three quantities j, n and i are given, the equation gives a single value for the third quantity; that is to say, to a given nominal rate convertible with a given frequency there is one, and only one, corresponding effective rate; to a given effective rate, there is one, and only one, corresponding nominal rate convertible with a given frequency; and, finally, there is one, and only one, frequency for whiel a given nominal rate and a given effective rate will correspond.
10. But if only one of the three quantities is given, any number of corresponding values may be found for either of the remaining two by assigning successive values to the other.

Thus, if j be given, any number of corresponding values of i may be found by giving successive values to m. As m inereases from 1 to ∞, the value of $\left(1+\frac{j}{m}\right)^{m}-1$ increases from j to $e^{j}-1$. Hence the effective rate corresponding to a given nominal rate increases as the frequency of conversion of the latter is inereased. For example, a nominal rate of 5 per-eent per annuun convertible quarterly gives a higleer effective rate than the same nominal rate convertible half-yearly. Again, if i be given, any number of corresponding values of j may be
found by giving successive values to m. As m increases from 1 to ∞, the value of $m\left\{(1+i)^{\frac{1}{n}}-1\right\}$ decreases from i to $\log _{e}(1+i)$. Hence the nominal rate corresponding to a given effective rate decreases as the frequency of conversion is increased. For example, the nominal rate sonvertible half-yearly corresponding to an effective rate of 5 per-cent exceeds the nominal rate convertible quarterly corresponding to the same effective rate. It will be noticed, however, that the nominal rate zorresponding to the effective rate i does not decrease indefinitely as m is increased, but gradually approaehes the value $\log _{e}(1+i)$, this being the limiting value of $m\left\{(1+i)^{\frac{1}{m}}-1\right\}$, when m is made infinitely large. This limiting value is called the Force of Isterest corresponding to the effective rate i, and is distinguished by the speeial symbol δ.
11. The force of interest corresponding to a given effective rate i may therefore be defined as the nominal rate convertible at infinitely short intervals corresponding to that effiective rate.
12. From the foregoing it will be seen that the basis upon which interest is to be calculated in any given case may be defined by means of an effective rate of interest, i; a nominal rate of interest, j, convertible with a given fiequency, n; or, fimally, a force of interest, δ; and that when any one of these three quantities is given the corresponding values of the other two may be determined by the equations

$$
\begin{equation*}
1+i=\left(1+\frac{j}{m}\right)^{m}=e^{\delta} \tag{4}
\end{equation*}
$$

13. To proceed to the general theory of the accumulation of principal under the operation of compound interest.

Let P be a given principal, S the sum to which it will amount if accumulated at compound interest for n years, and I the total interest earned on P in the given period. Let i be the effective rate of interest at which the given prineipal is to be accumulated, j the corresponding nominal rate of interest convertible m times a year, and δ the corresponding force of interest. Then by reasoning precisely similar to that by which it was shown that a unit accumulated for a year at compound interest at the nominal rate j convertible m times a year will amount to $\left(1+\frac{j}{m}\right)^{m}$, it follows that

$$
\begin{equation*}
\mathrm{S}=\mathrm{P}(1+i)^{n}=\mathrm{P}\left(1+\frac{j}{m}\right)^{m n}=\mathrm{P} e^{n \delta} \tag{5}
\end{equation*}
$$

This system of equations affords the means of calculating the amount, in a given number of years, of a given principal at any given rate of interest-effective or nominal-provided only that rate continues uniformly in operation throughout the entire period. The appropriate formula to employ in any given case will be

$$
\begin{array}{ll}
\text { is } & \mathrm{S}=\mathrm{P}(1+i)^{n} \\
\text { or } & \mathrm{S}=\mathrm{P}\left(1+\frac{j}{m}\right)^{m n} \\
\mathrm{~S}=\mathrm{P} e^{n \delta}
\end{array}
$$

according as the given rate is an effective rate, a nominal rate, or a force of interest. It would, of course, be practicable to obtain the amount of a given principal at a given nominal rate or force of interest, by first finding the effective rate corresponding to the given rate, and then employing the formula $\mathrm{S}=\mathrm{P}(1+i)^{n}$, but in general it will be found more convenient to use the directly appropriate formula.
14. It should be noted that tables giving the amount of 1 in any number of years (within the limits of the tables), at various effective rates of interest, may often be employed for the purpose of calculating the amount of a given principal at a given nominal rate. For example, let it be required to find the amount of 100 in 20 years at 6 per-cent. convertible half-yearly. By the appropriate formula the amount $=100(1.03)^{40}$, which also represents the amount of 100 in 40 years at 3 per-cent effective. Hence the required result will be obtained by taking 100 times the tabulated value of the amount of 1 in 40 years at 3 per-cent per annum. In fact, a table of amounts may be regarded more generally as a table of $(1+x)^{n}$, and used for any purpose for which the value of this function is required.
15. In the derivation of formula (5), it has been implicitly assumed that u is integral. In order to extend the formula to cases in which n is not an integer, it is necessary to adopt some convention as to the interest to be assumed for a fractional part of a year. When the given rate is an effective rate, or when it is a nominal rate and the fractional part of a year does not contain an integral number of the intervals of conversion, it is permissible to adopt any convention that may appear suitable, for the stated conditions do not prescribe any rule. When, however, the given rate is a uominal rate-say, j convertible m times a year-and the given period of accumulation contains an exact number
of the intervals of conversion, being, say, $n+\frac{t}{m} y$ cars, a given principal P will amount to $\mathrm{P}\left(1+\frac{j}{m}\right)^{n m+t}$, and this quantity, by algebraical substitution, $=\mathrm{P}(1+i)^{n+\frac{t}{m}}$, where i is the effective rate corresponding to j. It appears, therefore, in this case, that the interest on 1 at the effective rate i for $\frac{t}{m}$ of a year is $(1+i)^{\frac{t}{m}}-1$. This result suggests the usual and convenient assumption that the interest on 1 for any fractional part, say $\frac{1}{p}$, of a year at the effective rate i, may be taken as $(1+i)^{\frac{1}{p}}-1$, and the adoption of this convention leads to the generalizatiou that

$$
\mathrm{S}=\mathrm{P}(1+i)^{n}=\mathrm{P}\left(1+\frac{j}{m}\right)^{m n}=\mathrm{P} e^{n \delta}
$$

for all values of n, integral or fractional. Similarly, the total interest earned on P will be given, in all cases, by the formula

$$
\mathrm{I}=\mathrm{S}-\mathrm{P}=\mathrm{P}\left[(1+i)^{n}-1\right]=\mathrm{P}\left[\left(1+\frac{j}{m}\right)^{m n}-1\right]=\mathrm{P}\left[e^{n \delta}-1\right] .
$$

16. The foregoing articles deal with the accumulation of principal under the operation of compound interest. It is now necessary to consider the converse process of discounting. The gencral theory of compound discount may be developed on precisely the same lines as the theory of compound interest.
17. Discount may be defined as the consideration for the immediate payment of a sum due at a future date, and the total discount to be allowed for the present payment of a given sum due may be determined by reference to an effective rate of discount per amum, a nominal rate of discount per ammm convertible with a given frequency, or a force of discount, the last-mentioned quantity being, in other words, a nominal rate of discount convertible at infinitely short intervals.
18. The sum due, less the total discount upon it, is called its Preseat Value.
19. As there is an effective rate of interest corresponding to any given nominal rate of interest, so also there is an effective rate of discount corresponding to a given nominal rate of discount. For, if the nominal rate of discount be f per annum convertible m times a
year, the present value of 1 due $\frac{1}{m}$ th of a year hence, will be $1-\frac{f}{m}$. Similarly, for each interval of conversion the sum due will be decreased in the ratio of 1 to $1-\frac{f}{m}$. The present value of 1 due a year hence will, therefore, be $\left(1-\frac{f}{m}\right)^{m}$. Hence the total discount on 1 for the year, or, in other words, the effective rate of discount corresponding to the nominal rate f, will be $1-\left(1-\frac{f}{m}\right)^{m}$. If the effective rate of discount be represented by d,

$$
d=1-\left(1-\frac{f}{m}\right)^{m}, \text { or } 1-d=\left(1-\frac{f}{m}\right)^{m},
$$

whence

$$
\begin{equation*}
f=m\left\{1-(1-d)^{\frac{1}{m}}\right\} \tag{6}
\end{equation*}
$$

20. From these relations the effective rate of discount corresponding to a given nominal rate, or, conversely, the nominal rate convertible with any required frequency corresponding to a given effective rate, may be calculated just as in the case of the similar relations between the corresponding effective and nominal rates of interest.

As the frequency of conversion is increased, the nominal rate corresponding to a given effective rate increases. In the limiting case, when m is made infinitely large, f becomes, by definition, the force of discount corresponding to the effective rate d. Let this limiting value of f be denoted by δ^{\prime}. Then

$$
\begin{equation*}
\delta^{\prime}=\operatorname{Limit}^{\mathrm{L}^{m=\infty}} m\left\{1-(1-d)^{\frac{1}{n_{2}}}\right\}=-\log _{e}(1-d) \tag{7}
\end{equation*}
$$

21. To proceed to the general problem of finding the present value of a sum due n years henee.

Let S^{\prime} be the sum due, P^{\prime} its present value, and D the total discount on S^{\prime}. Let d be the effective rate at which the given sum due is to be discounted, f the corresponding nominal rate of discount convertible m times a year, and δ^{\prime} the corresponding force of discount. Then, by reasoning precisely similar to that by which it was shown that the present value of 1 due a year hence at the nominal rate f is $\left(1-\frac{f}{m}\right)^{m}$, it follows that

$$
\begin{equation*}
\mathrm{P}^{\prime}=\mathrm{S}^{\prime}(1-l)^{n}=\mathrm{S}^{\prime}\left(1-\frac{f}{m}\right)^{m n}=\mathrm{S}^{\prime} e^{-n \delta^{\prime}} \tag{S}
\end{equation*}
$$

whence $\mathrm{D}=\mathrm{S}^{\prime}\left[1-(1-d)^{n}\right]=\mathrm{S}^{\prime}\left[1-\left(1-\frac{f}{m}\right)^{m n n}\right]=\mathrm{S}^{\prime}\left(1-e^{-n \delta^{\prime}}\right)$.
22. These formulas may be extended, in precisely the same way as the corresponding compound interest formulas, to cases in which n is not integral. The discount on 1 for $\frac{1}{p}$ th of a year may be taken as $1-(1-d)^{\frac{1}{n}}$. and the formulas will then hold good for all values of n, integral or fractional.
23. So far, the operations of aceumulating and discounting have been considered separately, and two independent systems of equations have been established. It is obvions, however, that the two processes, although admitting of independent theoretical development, will not be independent in practice, for the operation of discounting, from the point of view of the investor, differs in no essential respect from that of investing capital to accumulate at compound interest. It becomes important, therefore, to investigate the relations between the rates of interest and discount, and between the general formulas of compound interest and compound discount in the case when the rate of discount is such that the present value of a sum due n years hence is that sum which will amount in n years, under the operation of compound interest, to the given sum due. Under these conditions, if S be the amount of P in n years at the effective rate of interest i, or at the corresponding nominal rate of interest j convertible m times a ycar, or at the corresponding force of interest δ, then will P be the present value of S at the ellective rate of discount d, or at the corresponding nominal rate of discount f convertible m times a year, or at the corresponding force of discount δ^{\prime}. But by formula (5)

$$
\mathrm{S}=\mathrm{P}(1+i)^{n}=\mathrm{P}\left(1+\frac{j}{m}\right)^{m n}=\mathrm{P} e^{n \delta}
$$

and by formula (S), if S and P be substituted for S^{\prime} and P^{\prime}

$$
\mathrm{P}=\mathrm{S}(1-d)^{n}=\mathrm{S}\left(1-\frac{f}{m}\right)^{m n}=\mathrm{S} e^{-n \delta^{\prime}}
$$

Therefore

$$
\begin{equation*}
(1+i)=\left(1+\frac{j}{m}\right)^{m}=e^{\delta}=(1-d)^{-1}=\left(1-\frac{f}{n}\right)^{-m}=e^{\S} \tag{9}
\end{equation*}
$$

The assumption by which these results have been obtained-the assumption, namely, that the present value of a given sum due will, if accumulated at compound interest, anount to that sum-is implicitly made in all compound interest problems. In any given investigation, therefore, where a single uniform rate of interest is employed, formulas (9) will hold good.
24. Instead of being independently developed, the theory of compound discount may be regarded as a necessary deduction from that of compound interest. From this point of view, the present value, at a given effective rate of interest, of a given sum due, is defined to be that sum which, if accumulated at the given rate of interest, will amount to the given sum; and the effective rate of discount corresponding to a given effective rate of interest is defined to be the difference between a unit and the present value, at the given rate of interest, of a unit due a year hence. From these definitions, since 1 is the present value of $1+i$, and consequently $\frac{1}{1+i}$ is the present value of 1 , it follows that $1-d=\frac{1}{1+i}$, from which formula (9) may be immediately deduced.
25. In practice it is customary to regard the operation of discounting from the point of view adopted in the last paragraph, and to speak of discounting a given sum, or finding its present calue, at a given rate of interest-that is, at the rate of discount corresponding to that rate of interest. Financial transactions are usually based upon a given rate of interest, and the corresponding rate of discount-if required-is deduced from the given rate of interest by means of formula (9). An exception to this rule occurs in the ease of bill-discounting, which is invariably based upon a rate of discount. In particular, what is termed "Bank rate" is the rate of discount charged by the Bank of England for discounting first-class bills. In employing an agreed rate of discount- f, say-to diseount a bill due $\frac{1}{n}$ th of a year hence the usual commercial practice is to treat the rate as a nominal rate of diseount convertible n times a year, and consequently to charge discount amounting to $\frac{f}{n}$ for eaeh unit of the amount of the bill, so that the effective rate of discount in respect of the transaction is $1-\left(1-\frac{f}{n}\right)^{n}$. As n is increased, the value of this expression diminishes. It appears,
therefore, that, in discounting bills at the uniform rate f, the banker or bill-discounter, by following commercial usage, realizes a slightly liigher effective rate on the longer bills than on the shorter ones, and that, inasmuch as practically all trade bills are drawn for periods of less than a year, he will realize all round a slightly lower effective rate than the rate f at which discount is calculated. The difference is, of course, so small as to be of no practical importance.
26. By obvious deductions from formula (9) it will be seen that, if i and d are correspouding effective rates of interest and discount, j and f the corresponding nominal rates of interest and discount convertible m times a year, and δ and δ^{\prime} the corresponding forces of interest and discount, then

$$
\begin{gathered}
i-d=i d \\
j-f=\frac{i f}{m}
\end{gathered}
$$

and

$$
\delta=\delta^{\prime} .
$$

The last equation establishes the important proposition that the forees of interest and discount corresponding to the same effective rate of interest are equal, and the two preceding equations suggest a verbal explanation of this fact. The difference between the effective rate of interest i and the corresponding effective rate of discount d is equal to a year's interest on d, for d is equivalent to a year's interest on the present value of 1 due a year hence, that is on $1-d$, whereas i is a year's interest on 1 . Similarly, since $\frac{j}{m}$ and $\frac{f}{m}$ may be regarded as corresponding effective rates of interest and discount for the interval of $\frac{1}{m}$ th of a year, $\frac{j}{m}$ exceeds $\frac{f}{m}$ by the interest for $\frac{1}{m}$ th of a year on $\frac{f}{m}$, that is, $\frac{j}{m}-\frac{f}{m}=\frac{j}{m} \cdot \frac{f}{m}$, or $j-f=\frac{j f}{m}$. Now, when m is increased indefinitely, j and f become respectively, by definition, the force of interest and the force of discount, and $\frac{j f}{m}$ vanishes. Consequently, the force of interest $=$ the force of discount.
27. The question may also be considered from a slightly different point of view. If a sum P increases in $\frac{1}{m}$ th of a year to S under the operation of interest, the nominal rate of interest per annum may be found by taking the ratio of $\mathrm{S}-\mathrm{I}$ ' to P and multiplying by m, whice
the corresponding nominal rate of discount will be found by taking the ratio of $\mathrm{S}-\mathrm{P}$ to S and multiplying by m-the numerator being the same in both cases, but the denominator beiug the present value in one case and the amount in the other. Now when the interval is indefinitely diminished the present value and the amount differ by an indefinitely small quantity, so that the two operdions gise identical results. Bua in this case the nominal rates of intcrest and discount become the forces of interest and discount. Consequently, as before, the force of interest $=$ the force of discount.

In future, the one symbol δ will be used for both the force of interest and the force of discount.
28. For convenience, the quantity $\frac{1}{1+i}$ or $(1+i)^{-1}$-the present value at the eflectire rate i of 1 due a year hence-is frequently denoted by the symbol v. Thus the present value, at the effective rate i, of S due n years hence, may be written either as $S(1+i)^{-n}$ or $S \mathcal{L}^{n}$.
29. Since $1-d=\frac{1}{1+i}$ it follows that

$$
d=\frac{i}{1+i} \quad \text { or } \quad i v
$$

This relation, which will be found useful in many investigations, expresses the fact that the discount at the eflective rate of interest i on 1 due a year hence is equal to the present value of a year's interest on 1 , or, conversely, that the interest on 1 if paid at the beginning instead of the end of the year would be d.
30. By reference to equation (9) it will be seen that any one of the quantities i, d, j, f, δ, and v may be expressed in terms of any other.

For example,

$$
\begin{aligned}
i & =(1-d)^{-1}-1=d+d^{2}+d^{3}+\ldots \\
& =e^{\delta}-1=\delta+\frac{\delta^{2}}{2!}+\frac{\delta^{3}}{3!}+\ldots \\
d & =1-(1+i)^{-1}=i-i^{2}+i^{3}-\ldots \\
& =1-e^{-\delta}=\delta-\frac{\delta^{2}}{2!}+\frac{\delta^{3}}{3!}-\ldots \\
\delta & =\log e(1+i)=i-\frac{i^{2}}{2}+\frac{i^{3}}{3}-\ldots
\end{aligned}
$$

31. As i, d and δ are always, in practice, small quantities, the successive terms in the sume given above diminish rapilly. These series afford, therefore, the means, when the numerical value of any one of the functions in question is given, of caleulating the values of the others with any desired degree of aceuracy. Consider, for example, the expausion of δ in terms of i :

$$
\delta=i-\frac{i^{2}}{2}+\frac{i^{3}}{3}-\ldots
$$

In this series the terms are alternatively positive and negative, and each is less than the preceding one. Hence, any given term taken positively is numerically greater than the sum of all the subsequent terms. Cunsequently, the error resulting from the neglect of all terms after, say, the n th, is less than $\frac{i^{n+1}}{n+1}$. To take an actual example, let $i=04$. Then, since $\frac{(\cdot 04)^{5}}{5}=00000002049$, the error in taking $\delta: 1 s=\cdot 04-\frac{.0016}{2}+\frac{.000064}{3}-\frac{\cdot 00000256}{4}$, or $\cdot 03922069$, will not affect the seventh place in the result.

Good approximations, either for use in algebraical analysis or for practical purposes-wher an isolated value is required and great accuracy is not neeessary-may also be obtained by negleeting all terms after the second. Thus

$$
\begin{aligned}
& i=\delta+\frac{1}{2} \delta^{2} \text { approximately } \\
& d=\delta-\frac{1}{2} \delta^{2} \quad " \\
& \delta=i-\frac{i^{2}}{2} \quad,
\end{aligned}
$$

Also, by addition of the first and second of these appruximate relations,

$$
\delta=\frac{1}{2}(i+d)
$$

a formula which differs from the true value of δ by only $\left(\frac{\delta^{3}}{3!}+\frac{\delta^{5}}{5!}+\ldots\right)$ in excess, and gives a result correct to at least four pla?es of clecimals for all values of i not greater than 07 . For many practieal purposes, however, sufficiently accurate results may be most conveniently
nbtained by ordinary arithmetic or by logarithms. Thus, if i be given as $0 \bar{y}$, the value of v will be best foum by taking the reciprocal of 1.05 , and that of the corresponding nominal rate of interest convertible quarterly by means of the relation $\log \left(1+\frac{j}{4}\right)=\frac{1}{4} \log 1 \cdot 0 \overline{5}$. In the latter case it would be necessary to use a six or seven-figure logarithm table, as the first significant figure in $\log \left(1+\frac{j}{i}\right)$ will be the third.

To take another example, the value of δ corresponding to a given value of j, and the value of j corresponding to a given value of δ, would be respectively obtained by means of the relations $\delta=m \log \left(1+\frac{j}{m}\right)$ $\div \log e$ and $\log \left(1+\frac{j}{m}\right)=\frac{\delta}{m} \times \log e$.

It has been stated in Article 5 that $j_{(m)}$ denotes a nominal rate j convertible m times a year. It is, horever, convenient to use thr symbol in the restricted sense of the nominal rate convertrble m times a year corresponding to the effective rate i, or as an abbreviation for $m\left[(1+i)^{\frac{1}{m}}-1\right]$, and it will in future be so used in this book. A nominal raie, when used without direct reference to the effectise sate to which it corresponds, will be denoted as before by the symbol j without a sulfix.

On pag 221 will be found a table giving the values of $d, v, j_{(2)}, j_{(1)}, \delta$ and $\log _{10}(1+i)$ corresponding to varous effective rates from 01 to 0.5 .
32. To summarize the principal results established in this chapter-
I. At Compound Interest. If i be an effective rate of interest, j_{m} the correspouding nominal rate payable m times a year, δ the corresponding force of interest, and S the amount of P in n years:

$$
\begin{gathered}
\mathrm{S}=\mathrm{P}(1+i)^{n}=\mathrm{P}\left(1+\frac{j_{m i}}{m}\right)^{m n}=\mathrm{P} e^{n \delta} \\
i=\left(1+\frac{j_{(m)}}{m}\right)^{m}-1=c^{\delta}-1 \\
j_{(m)}=m\left\{(1+i)^{\frac{1}{m}}-1\right\}=m\left\{e^{\frac{\delta}{m}-1}\right\} \\
\delta=\log _{e}(1+i)=m \log \left(1+\frac{j_{(m i n}}{m}\right)
\end{gathered}
$$

II. At Compound Discount. If d be an effective rate of discount, f^{*} the comespondiug nominal rate convertille m times a year, δ^{\prime} the corresponding force of discount, and P^{\prime} the present value of S^{\prime} lue at the end of n years:

$$
\begin{aligned}
& \mathrm{Y}^{\prime}=s^{\prime}(1-d)^{n}=\mathrm{S}^{\prime}\left(1-\frac{f}{m}\right)^{m n}=\mathrm{S}^{\prime} e^{-n \delta^{\prime}} \\
& d=1-\left(1-\frac{f}{m}\right)^{m}=i-e^{-j} \\
& f=m\left\{1-(1-d)^{\frac{1}{m}}\right\}=m\left\{1-e^{-\frac{\delta^{\prime}}{m}}\right\} \\
& \delta^{\prime}=-\log _{e}(1-d)=-m \log c\left(1-\frac{f}{m}\right)
\end{aligned}
$$

III. In any wiveir problem, when the rates of interest and discomnt 1 ecessarily correspond,

$$
\begin{aligned}
\mathrm{s} & =\mathrm{P}(1+i)^{n}=\mathrm{P}\left(1+\frac{j}{m n}\right)^{m n} \\
& =\mathrm{P}(1-d)^{-n}=\mathrm{P}\left(1-\frac{f}{m}\right)^{-n n}=\mathrm{P} e^{n \xi} \\
\mathrm{P} & =\mathrm{S}(1+i)^{-n}, n \mathrm{~S} v^{n},=\mathrm{S}\left(1+\frac{i(m}{m}\right)^{-m n} \\
& =\mathrm{S}(1-d)^{n}=\mathrm{S}\left(1-\frac{f}{m}\right)^{m n}=\mathrm{S}-n s \\
d & =\frac{i}{1+i}=i v=1-v
\end{aligned}
$$

and the Force of Interest $=$ the Foree of Discount.
33. It has been assumed in this chapter that the rate of interest, whether effective or nominal, employed in any given investigation remains unchanged thronghout. Most financial calculations are based upon a single uniform rate of interest, but inasmuch as the rate of interest actually realisable upon investments is subject to considerable variations, it is of some inportance to investigate formulas applicable to cases in which a varying rate is assumed. In general, if I' be
accumulatel for n years at compound interest, the effective rate being i_{1} for the first year, i_{2} for the second year, and so on up to i_{n} for the ath year, the amount of P in n years will be

$$
\mathrm{P}\left(1+i_{1}\right)\left(1+i_{2}\right)\left(1+i_{3}\right) \ldots\left(1+i_{n}\right)
$$

Thus the amount of 1 in 40 years at an effective rate of 3 per-cent for the first 20 years, $2 \frac{1}{2}$ per-cent for the next 10 years, and 2 per-cent for the last 10 years, will be $(1 \cdot 03)^{20}(1 \cdot 025)^{10}(1 \cdot 02)^{10}$.

In order to develop the theory of compound interest at a varying rate, it would be necessary to assume some relation between i_{1}, i_{2}, \&c. It might be assumed, for example, that $i_{1}, i_{2}, \mathcal{E}$., decrease in such a way that $1+i_{1}, 1+i_{2}$, \&c., form a Geometric Progression with the common ratio $1-k$, where k is a positive quantity small relatively to i_{1}. Then $1+i_{2}=(1-k)\left(1+i_{1}\right) ; 1+i_{3}=(1-k)^{2}\left(1+i_{1}\right) ; \mathbb{d}$., and the expression for the amount of 1 in n years becomes $(1-k)^{1+2+\cdots+\overline{n-1}} \times\left(1+i_{1}\right)^{n}$, or $(1-k)^{\frac{n(n-1)}{2}}\left(1+i_{1}\right)^{n}$. If i_{1} be taken as $\cdot 04$, and k as $\cdot 0005$, the successive jearly rates during a period of 20 years will be $04, \cdot 03945$, $\cdot 03896, \ldots \cdot 03016$ (approximately), and the amount of 1 in 20 years will be $90935 \times 2 \cdot 1911$, which $=1 \cdot 9925$. It will be noticed that a rate decreasing in this particular way gives the same amount for a term of n years as a uniform effective rate of $(1-k)^{\frac{n-1}{=}}\left(1+i_{1}\right)-1$.

The mode of decrease assumed in the last paragraph is practically limited in applicability to a term of years not exceeding $1-\frac{\log \left(1+i_{1}\right)}{\log (1-k)}$, for after that term the rate of interest $(1-k)^{n-1}\left(1+i_{1}\right)-1$ would become negative. An alternative assumption, which gives a positive value to i_{n} for any valuc of n, however large, and might, therefore, be regarded as holding good in perpetuity, would be that the effective rates for successive years form a decreasing (ieometric Progression, so that the amount of 1 in n years $=\left(1+i_{1}\right)\left(1+\pi i_{1}\right) \ldots\left(1+k^{n-i_{1}}\right)$, where k is <1. If this expression be denoted by S_{n}, then

$$
\begin{aligned}
\log _{e} \mathrm{~S}_{n} & =\log _{e}\left(1+i_{1}\right)+\log _{e}\left(1+k i_{1}\right)+\ldots+\log _{e}\left(1+k^{n-1} i_{1}\right) \\
& =\left(i_{1}-\frac{i_{1}^{2}}{2}+\ldots\right)+\left(k i_{1}-\frac{k^{2} i_{1}^{2}}{2}+\ldots\right)+\left(k^{n-1} i_{1}-\frac{k^{n n-2} 1_{1}^{2}}{2}+\ldots\right) \\
& =\frac{1-k^{n}}{1--i_{i}} i_{1}-\frac{1-k^{2 n}}{1-k^{2}} \cdot \frac{i_{1}^{2}}{2}+\ldots
\end{aligned}
$$

Suppose that $k=955$, and that $i_{1}=04$ as before. Then the successive yearly rates for the first 20 years will be $04, \cdot 03910,03581, \ldots 03001$, and, since for this value of k the terms in the above series decrease rapidly, the terms after the second may be neglected, whence, approximately, $\log _{e} \mathrm{~S}_{20}=69564-01219=65345$, and $\mathrm{S}_{20}=1.9807$, which differs by only 0u05 from the correct value.

Since each term in the series $\frac{1}{1-h_{1}} i_{1}-\frac{1}{1-k^{2}} \cdot \frac{i_{1}^{2}}{2}+\ldots$ is less than the preceding term, and the terms are alternatively positive and negative, it follows that the amount of 1 at the decreasing rate assumed in the last paragraph has a finite limit when n becomes intinite. The assumption of a decreasing rate such that the amount of 1 has a finite limit has sometimes been advocated as a mecessary hasis of the '1'heory of Compound Interest in view of the impossible results given by the ordinary assumption of a uniform rate when applied to the accumulation of even a small principal for a very long period. For the periods, however, over which financial transactions usually extend, the assumption of a uniform rate is legitimate and in accordance with practice. The practical inference to be drawn from the theoretical difficulty as to the aceumulation of capital for very long periods appears to be that in transactions involving accumulation the uniform rate assumed for comparatively long periods should be lower than that assumed for short periods.

CHAPTEL II.

On tife Solution of Problems in Compound Interest. Practical Examples. Equation of Pafarents.

1. Probleas in Compound Interest may be broally elassified into (1) those in which it is required to determine the present value of some scries of payments, or the terus of a given transaction, in order that a specified rate of interest may be realized; (2) those in which, the present value of a given series of payments or the terms of a given transaction being stated, it is required to find the rate of interest involved. In the subsequent chapters of this work certain problems of both these classes, with various questions arising out of them, will be specially investigated, but it may be useful to point out at this early stage that the solution of all such problems calls for nothing more than a correct application of the prineiples and formulas established in the preceding chapter.
2. Thus, the valuation of redeemable securities constitutes a large class of problems which on account of their practical importance demand special treatment, but in the ease of any given problen of this class, there is no difficulty in obtaining a solution by a direct application of the fundamental formulas summarized in Art. 32 of Chapter I. 'To take an example, let it be required to find what should be the price per-cent (including brokerage, \&c.) of Metropolitan 3 per-cent Consolidated Stock, on 1st February, 1915, to pay a purchaser interest at the effective rate i. This Stock is redeemable at par on 1st February 1941, and interest is payable quarterly on the 1st February, May, August and November. The required price will obviously be the sum of the present values at rate i of the various payments the purehaser will receive, namely, the quarterly dividends of 75 (negleeting
income-tax) from lst May, 1915, to 1st February, 1911, and the principal of 100 on the last-mentioned date. By Art. 28, Chap. I, the present value of the first quarter's dividend will be $750^{\frac{1}{2}}$, that of the second $\cdot 7 \tau^{\frac{1}{2}}$, and so on, the present value of the final dividend being $75 c^{26}$; and the present value of the principal will be $100 v^{26}$. Consequently the required price $=75\left(v^{\frac{2}{2}}+v^{\frac{1}{2}}+\ldots+v^{26}\right)+100 v^{26}$, which reduces, by summation of the geometrical progression, to $75 \frac{1-v^{26}}{(1+i)^{\frac{2}{1}}-1}+100 v^{26}$. By logarithms it may be easily found that the value of this expression, when $i=$ say $\cdot 035$ and v consequently $=966184$, is 92.215 . Thus it appears that the price of Metropolitan 3 per-cent Stock, on 1st February, 1915, to pay an effective $3 \frac{1}{2}$ per-cent without allowance for income-tas, would be $92 \frac{1}{4}$ per-cent approximately. The calculation in this ease might be simplified, as will be shown subsequently, by the use of special tables, but it will be seen that the solution of the problem does not raise any new question of principle.
3. In many cases it is necessary, or convenient, in order to obtain the solution of a given problem, to write down an equation of value. In an equation of this nature it is essential that all the quantities involved should be discounted or accumulated to the same moment of time-either the present moment or some future moment as may be more convenient. Let it be required, for example, to find what two sums of equal amount due six months and a year hence respectively will together be equiralent at the effective rate i to a single payment of P due nine months hence, and let each of the required sums be \boldsymbol{X}. Then the equation of value may be writteu down either as at the present moment, or, more conveniently, as at the date when the payment of $£ \mathrm{P}$ falls due. In the former case the equation will be

$$
\tilde{\lambda}^{\frac{1}{2}}+\dot{\lambda} v=\mathrm{P}^{3} v^{\frac{1}{2}}
$$

and in the latter

$$
\mathrm{X}(1+i)^{\frac{1}{2}}+\mathrm{X}(1+i)^{-\frac{1}{2}}=\mathrm{P} .
$$

In this case the two equations are equally casy to write down, and the first reduces immediately to the more symmetrieal form of the second, but in some cases much trouble will be saved by selecting the most appropriate moment at which to write down the equation of value.
4. Another point to which attention may be directed is that in determining the effective rate of interest yielded by a transaction extending veer a period less than a year, or by a number of transactions extending over different periods, it is nut necessary to make any
assumption as to the terms upon which the eapital employed in any one of these transactions is or could be invested after the close of that particular transaction. Thus the effective rate realized by the purchase of a bill for 100 due 3 months hence at the price of 98 is $\left(1 \frac{1}{49}\right)^{4}-1$; it is immaterial, so far as the rate realized upon this partieular transaction is concerned, whether or upon what terms the proceeds of the bill are invested for the remaining nine months of the year. So, if two sums of S_{1} and S_{2} due at the end of n_{1} and n_{2} years respectively are aequired for a present payment of P , the effective rate realized will be i, as determined from the equation $\mathrm{P}=\mathrm{S}_{1} v^{n_{1}}+\mathrm{S}_{2} v^{n_{2}}$. The result means that the entire purchase-money is invested at rate i until part of it is realized on the first sum becoming due, and that thereafter the remainder is iuvested at the same rate until realization, and the transaction as a whole is said to yield that rate; it is immaterial how any part of the invested capital is re-invested after realization.
5. A third point, and one of considerable practical importance in the solution of problems in compound interest, is that a corresponding effective rate may always be substituted for, or employed in working in the place of, a nominal rate, and vice versa. Thus, if it be required to find the value of any series of payments, or to determine the conditions of some financial transaction, on the basis of interest at a gives nominal rate j, the problem may be worked out on the basis of an effective rate i, and the result in terms of the given nominal rate will be obtained by substituting for i its value in terms of j. In many cases it will be found very much simpler to proceed in this way than to work throughout in terms of j. Occasionally, on the other hand, it may be found convenient to employ a nominal rate in working, and to substitute for that rate, at the final stage, its value in terms of a given effective rate. Similarly, if it be required to find the rate of interest yielded by a given transaction, it is immaterial to the result whether the effective rate or a nominal rate be determined. The object in all cases should be to determine the yield in that form-whether as an effective rate or a nominal rate-to which the conditions of the question most easily lend themselves. The yield, when determined, can of course be readily expressed as an effective rate or a nom nal rate in accordanee with the requirements of the question. These prineiples follow at once from the fundanental equation

$$
(1+i)^{n}=\left(1+\frac{j_{(m)}}{m}\right)^{m i n} \text { for all values of } n .
$$

6. The following examples further illustrate the principles and formulas established in the preceding chapter:-
(i) The sum of the amount of 1 in 2 years at a certain nomina? rate of interest convertible half-yearly, and of the present value of 1 due 2 years hence at the same nominal rate of discount convertible half-yearly, is $2 \cdot 00480032$.
Find the rate.
The amount of 1 in 2 years as the nominal rate of interest $2 r$ convertible half-yearly is $(1+r)^{4}$. And the present value of 1 due 2 years hence at the nominal rate of discount $2 r$ convertible half-yearly is $(1-r)^{4}$.
\therefore If $2 r$ be the rate

$$
(1+r)^{4}+(1-r)^{4}=2 \cdot 004800: 22
$$

whence
or

$$
\begin{gathered}
r^{4}+6 r^{2}-\cdot 00240016=0, \\
\left(r^{2}-\cdot 000 \pm\right)\left(r^{2}+6 \cdot 0004\right)=0,
\end{gathered}
$$

giving as a practical solution $r=02$ and $2 r=\cdot 04$.
(ii) A money-lender makes an advance on security of a one-month bill and deducts interest in advance at the rate of $1 s$. in the £. He allows the bill to be renewed 11 times, each time for a month on payment of $1 s$. per $£$, and at the end of the year the bill is duly met. What rate of interest does lie realize on the transaction?
The net sum invested by the moner-lender in respect of each unit of the amount of the bill is (after deduction of the first month's interest) 9.9 . At the end of each of the first 11 months he receives 05 , and at the end of the 12th month he receives 1 , that is, 95 (the net sum invested) $+\cdot 05$. Hence on each unit invested he receives interest at the rate of $\frac{12}{19}$ per annum payable monthly. This is the nominal rate of interest convertible monthly realized on the transaction. The corresponding effective rate is $\left(\frac{20}{1.9}\right)^{12}-1$, which $=8506$, or $55 \cdot 06$ per-cent per ammum.
It may be observed that if the transaction had been determined at the end of the first month by the bill
being then met, the effective rate realized would have been precisely the same. The successive renewals of the bill upon the same terms as those upon which it was initially discounted do not affect the rate of interest realized; they merely proride the money-lender during the remaining 11 months of the year with an investment yielding the same effective rate as that obtained on the original transaction.
(iii) In how many years will a sum of money double itself at compound interest?
If interest be assumed at the effective rate i, the required number of years will be n, where $(1+i)^{n}=2$. In any given case, the value of n will be most accurately obtained by ordinary logarithms. Thus, if $i=05$,

$$
\begin{aligned}
n=\frac{\log 2}{\log 1 \cdot 05} & =\frac{30103}{0211593} \\
& =14 \cdot 207 \text { nearly }
\end{aligned}
$$

But a general approximate solution, and a convenient rule for practical purposes, may be obtained by taking Nippierian instead of ordinary logarithms. Proceeding in this way,

$$
\begin{aligned}
n & =\frac{\log e^{2}}{\log _{e}(1+i)}=\frac{30103 \times 2 \cdot 3026}{i-\frac{i^{2}}{2}+\frac{i^{3}}{3}-\ldots} \\
& =\frac{\cdot 69315}{i}\left[1+\frac{i}{2}-\frac{i^{2}}{12}\right]=\frac{693}{i}+35 \text { approximately. }
\end{aligned}
$$

The number of years in which a sum of money will double itself at a given effective rate of interest may therefore be found, with approximate accuracy, by dividing 69.3 by the rate of interest per-cent and adding 35 to the result. Compare the common rule:-To find the number of years in which money will double itself, divide 69 by the rate of interest per-cent.
If interest be at a nominal rate j, convertible m times a year, the method of the preceding paragraph will obviously aply, for $\frac{j}{m}$ may be regarded as an effective wate for $\frac{1}{m}$ th
of a year. The general approximation will give $\left(\frac{693}{\frac{j}{m}}+35\right) \frac{1}{m}$ ths of a year-i.e., $\left(\frac{693}{j}+\frac{35}{m}\right)$ years.
(iv) By how much will the amount of a sum of money in n years, at a given rate of interest, convertible m times a year, exceed its amount at the same rate convertible annually?
Let the given sum be P, the given rate r, and the required result X . Then

$$
\mathrm{X}=\mathrm{P}\left(1+\frac{r}{m}\right)^{m n}-\mathrm{P}(1+r)^{n}=\mathrm{P}(1+r)^{n}\left[\frac{\left(1+\frac{r}{m}\right)^{m n}}{(1+i)^{n}}-1\right]
$$

For practical values of m,

$$
\frac{\left(1+\frac{r}{m}\right)^{m}}{1+r}=1+\frac{m-1}{2 m} \cdot \frac{r^{2}}{1+r} \text { nearly, }
$$

and, since $\frac{m-1}{2 m} \cdot \frac{r^{2}}{1+r}$ will usually be small relativeiy to $\frac{1}{n}$,

$$
\left(1+\frac{m-1}{2 m} \cdot \frac{r^{2}}{1+r}\right)^{n}=1+\frac{n(m-1)}{2 m} \cdot \frac{r^{2}}{1+r} \text { approximately. }
$$

Hence, as a rough approximation for cases in which n is not liurge,

$$
\mathrm{X}=\mathrm{P}(1+r)^{n} \cdot \frac{n(m-1)}{2 m} \cdot \frac{r^{2}}{1+r^{2}} .
$$

To test the accuracy of the result, take $\mathrm{P}=1, r=04$, $m=2$, and $n=50$. In this case, $\mathrm{P}(1+r)^{n}=7 \cdot 1067$, and $\mathrm{X}=7 \cdot 1067 \times \frac{50}{4} \times \frac{\cdot 0016}{1 \cdot 04}=1367$ nearly. The amount of 1 in 100 years at 2 per-cent per annum is $7 \cdot 246$, and the true value of X would, therefore, be 1379 .
(v) A sum of money is to be invester and accumulated in Consols for n years from 5th April in a specified year. Obtain an expression for the effective rate of interest realised, on the assumption that the rate of income tax remains unchanged throughout.
The dividends on Consols are payable quarterly, at the rate of $2 \frac{2}{2}$ per-cent per annum, on 5 th January, April, July and

October. Let k_{0} be the price (including brokerage) per unit of Consols at which the original investment is made; $k_{\frac{1}{2}}, k_{\frac{k_{2}}{2}} \ldots k_{n-\frac{\lambda}{2}}$, the prices at which the successive quarterly dividends are invested; k_{n} the price at which the accumulated amount is sold at the end of n years ; and t the rate of income tax per unit. Then if i bu the effective rate of interest realised, $(1+i)^{n}=$
$\frac{k_{n}}{k_{0}}\left[1+\frac{.0062 .5(1-t)}{k_{\frac{2}{2}}}\right]\left[1+\frac{.00625(1-t)}{k_{\frac{2}{2}}^{2}}\right] \cdots\left[1+\frac{.00625}{k_{n}} \frac{(1-t)}{k_{n}}\right]$
from which the value of i may be found, if the values of t and the k 's are known, by taking logarithms.
If the price has fallen or risen more or less continuously during the period under consideration an appruximation to the value of i would be obtained by assuming all the dividend investments to have been made at the mean price, on which assumption

$$
n \log (1+i)=\log k_{n}-\log k_{0}+4 n \log \left[1+\frac{\cdot 00625(1-t)}{\frac{1}{2}\left(k_{0}+k_{n}\right)}\right]
$$

Suppose, for example, $n=10 ; k_{0}=9$; $k_{n}=\cdot 85$; and $t=9 d$. in the $£$. Then the approximate formula would give

$$
10 \log (1+i)=\log 85-\log 90+40 \log 1 \cdot 006875
$$

whence

$$
i=021927 .
$$

The problem is of some importance on account of the facilities given for the investment of Post Office Savings Bank deposits in Consols, and it will be seen from the above example that with an initial price of 90 a fall of 5 in 10 years would reduce the return from about $£ 2.13 s$. to under $£ 2.4 s$. pereent, which, however, would still be somewhat more than the 2 per-cent allowed on deposits. It should, however, be borne in mind that under the arrangements for the investment of dividends on accumulating Consols accounts the quarterly dividends are not invested until about a month after the dates on which they become due, with the result of an arerage loss of a month's interest on each dividend.
7. The problem of finding the equated time for a number of sums duc at different times, or, in other words, the average date at which, on the basis of an agreed rate of interest, all the sums might be paid
without theoretical advantage or disadvantage to either party, is one of some practicai importance.

Let the various sums be $S_{1}, S_{2}, S_{3} \ldots S_{r}$, due at the end of $n_{1}, n_{2}, n_{3} \ldots n_{r}$ years respectively, and let n be the equated time on the basis of interest at the effective rate i. Then

$$
\left(\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{r}\right) v^{n}=\mathrm{S}_{1} v^{n_{1}}+\mathrm{S}_{2} v^{n_{2}}+\ldots+\mathrm{S}_{r} v^{n_{1}}
$$

whence
$n=\frac{\log \left(\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{r}\right)-\log \left(\mathrm{S}_{1} c^{n_{1}}+\mathrm{S}_{2} c^{n_{2}}+\ldots+\mathrm{S}_{r} c^{n_{r}}\right)}{\log (1+i)}$
The aecurate calculation of n by this formula would not, in general, present any difficulty, but an approximation to its value may be obtained in the following way. In terms of δ, the force of interest or discount corresponding to i, the formula becomes

$$
\begin{aligned}
n & =-\frac{1}{\delta} \log _{e} e^{\frac{S_{1} e^{-n_{1} \delta}+S_{2} e^{-n_{2} \delta}+\ldots+S_{r} \cdot e^{-n_{r} \delta}}{S_{1}+S_{2}+\cdots+S_{r}}} \\
& =-\frac{1}{\delta} \log _{\delta} e \frac{S_{1}\left(1-n_{1} \delta+\frac{n_{1} \delta^{2}}{2}-\ldots\right)+S_{2}\left(1-n_{2} \delta+\frac{n_{2}^{2} \delta^{2}}{2}-\ldots\right)+\ldots}{S_{1}+S_{2}+\ldots+S_{r}}
\end{aligned}
$$

$$
\text { or, } \quad \text { if } \leq S \text { be written for }\left(S_{1}+S_{2}+\ldots+S_{r}\right) \text {, }
$$

$$
\Sigma \mathrm{I} \mathrm{~S} \text { for }\left(n_{1} S_{1}+n_{2} \mathrm{~S}_{2}+\ldots+n_{r} \mathrm{~S}_{r}\right)
$$

and

$$
\leq n^{2} S \text { for }\left(n_{1}{ }^{2} S_{1}+n_{2}{ }^{2} S_{2}+\ldots+n_{r}{ }^{2} S_{r}\right),
$$

$$
n=-\frac{1}{\delta} \log e\left[1-\left(\frac{\Sigma n \mathrm{~S}}{\leq \mathrm{S}} \delta-\frac{\Sigma u^{2} \leq \delta^{2}}{\leq 5} \frac{2}{2}+\ldots\right)\right]
$$

$$
=\frac{\Sigma n \mathrm{~S}}{\Sigma \mathrm{~S}}-\frac{\delta}{2}\left[\frac{\Sigma n^{2} \mathrm{~S}}{\Sigma \mathrm{~S}}-\left(\frac{\Sigma \mathrm{I} \mathrm{~S}}{ \pm \mathrm{S}}\right)^{2}\right]+\text { terms iuvolving higher powern of } \delta .
$$

Hence as a tirst approximation

$$
\begin{equation*}
n=\frac{\Sigma n S}{\Sigma S} \tag{2}
\end{equation*}
$$

and as a second approximation

$$
\begin{equation*}
n=\frac{\leq n \mathrm{~S}}{\Sigma \mathrm{~S}}-\frac{\delta}{2}\left[\frac{\Sigma n^{2} \mathrm{~S}}{\Sigma \mathrm{~S}}-\left(\frac{\Sigma n \mathrm{~S}}{ \pm \mathrm{S}}\right)^{2}\right] \tag{3}
\end{equation*}
$$

It will be found that formula (3) gives a close approximation to the true equated time in most cases that are likely to arise (see examples, J.I.A., vol. xlv, p. 486). But in actual practice it would always be adrisableand would generally entail little, if any, more work-to calculate the equated time alecurately by formula (1).
8. Formula (2) of the preceding Article expresses algebraically the common rule for finding the equated time of payment of a number of amounts due at different times: Multiply each amount by the number of years to clapse before it becomes due, and divide the sum of the products by the sum of all the amounts. It is obvious, however, from inspection of the second term of (3), which term may be written in the form $-\frac{\delta}{2} \frac{\leq S_{1} \mathrm{~S}_{2}\left(n_{1}-n_{2}\right)^{2}}{(\Sigma \mathrm{~S})^{2}}$, that if the differences between the pericds to elapse before the several amounts become due are large, the result given by formula (2) will differ materially from that given by formula (3), and, therefore, in general, from the true equated time. The rule cannot, therefore, be relied upon in practice, and must be regarded as giving a rough approximation only to the true result in eases in which the respective periods of deferment of the several amounts do not differ very greatly.
9. The result given by the rule discussed above always exceeds the true equated time; that is to say the rule favours the debtor. The following neat proof of this fact is taken from J.I.A., vol. xxxiii 1. $589:-$

The Arithmetical Mean of S_{1} quantities, each $=v^{n_{1}}, \mathrm{~S}_{2}$ quantilics, each $=v^{n_{2}}, \ldots \mathrm{~S}_{r}$ quantitics, each $=v^{n_{r}}$, is $\frac{\mathrm{S}_{1} r^{n_{1}}+\mathrm{S}_{2} r^{n_{2}}+\ldots+\mathrm{S}_{r^{2}} 2^{n_{r}}}{\mathrm{~S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{r}}$.

The Geometrical Mean of the same quantities is

$$
v^{\frac{n_{1} \mathrm{~S}_{1}+n_{2} \mathrm{~S}_{2}+\ldots+n_{r} \mathrm{~S}_{r}}{\mathrm{~S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{r}}} .
$$

Now the Arithmetical Mean of any number of quantities is $>$ their Geometrical Mean

$$
\therefore \frac{\mathrm{S}_{1} v^{n_{1}}+\mathrm{S}_{2} v^{n_{2}}+\ldots+\mathrm{S}_{r} \cdot v^{n_{r}}}{\mathrm{~S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{r}} \text { is }>v^{\frac{n_{1} \mathrm{~S}_{1}+n_{2} \mathrm{~S}_{2}+\ldots+n_{2} \mathrm{~S}_{r}}{\mathrm{~S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{s}_{r}} \text { 俍 }}
$$

or
$\left(\mathrm{S}_{1} v^{n_{1}}+\mathrm{S}_{2} v^{n_{2}}+\ldots+\mathrm{S}_{r} \cdot v^{n_{r}}\right)$ is $>\left(\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{r}\right) v^{\substack{n_{1} \mathrm{~S}_{1}+s_{2} \mathrm{~S}_{2}+\ldots+n_{r} \mathrm{~s}_{r} \\ s_{1}+\mathrm{S}_{2}+\ldots+\mathrm{s}_{r}}}$
From this inequality it appears that the present value of S_{1} due at the end of n_{1} years, S_{2} due at the end of n_{2} years, \&c., is $>$ the present value of $\left(\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots\right)$ due at the end of $\frac{n_{1} \mathrm{~S}_{1}+n_{2} \mathrm{~S}_{2}+\ldots}{\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots}$ years.

The quantity $\frac{n_{1} \mathrm{~S}_{1}+n_{2} \mathrm{~S}_{2}+\ldots}{\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots}$ is therefore $>$ the true equated time of the sums.
10. As a practical example of the foregoing proposition, take the following:-Whieh would be the better investment-two bills for $£ \check{E}, 000$ each for two and four months respectively, or a three months, bill for $£ 10,000$, the same rate of discount being oliered in both cases?

Since commereial discount is calculated by the formula $\frac{\mathrm{Sf}}{\mathrm{m}}$ where S is the amount of the bill, f the rate of discount, and $\frac{1}{m}$ th of a pear the time, the price of the two bills for $£ 5,000$ each will be exactly the same as that of the single bill for $£ 10,000$. But at a given rate of interest the present value of $£ 5,000$ due at the end of two months and $£ 5,000$ due at the end of four months is $>$ that of $£ 10,000$ due at the end of three months. Therefore, at a given price, $£ 5,000$ due at the end of two months and $£ 5,000$ due at the end of four months give a better yield than $£ 10,000$ due at the end of three months; in other words, the two bills form the better investment.

Of course, in practice, other considerations would come in. The rate of discount in commercial transactions may be considered as representing partly interest and partly a premium for insurance against the risk of possible loss of principal; consequently a higher rate will generally be obtainable on bills for longer periods.

CHAPTER IIL.

On the Valuation of Annuities-Certain.

1. An Anxutity is a series of payments made at equal intervals during the continuance of a given status.
2. When the status is a fixed term of years, the annuity is called an annuity-certain.

An Annuity-Certain may, therefore, be defined as a series of payments made at equal intervals during a fixed term of years.
3. When the payments are of uniform amount, the annuity is measured by the total amount payable in a year, which amount is sometimes called the annual rent. Thus, an annuity under which a payment of $\frac{k}{m}$ is made at the end of each $\frac{1}{m}$ th of a year is described as an amuity of k per annum payable m times a year, and k is said to be the annual rent of the annuity.
4. Annuities-certain may be immediate, in which case the firss payment is made at the end of the first interval; or due, in which case the first payment is made at the beginning of the first interval; or deferred, in which case a certain number of intervals has to elapse and an immediate annuity is then entered upon.

Thus an immediate amnity of k per annum, payable quarterly for n years will consist of $4 n$ payments of $\frac{\pi}{4}$ each made at quarterly intervals, the first being made at the end of three months and the last at the end of the n years. In an annuity-due of the same description, the first payment is made immediately and the last at the beginning of the fourth quarter of the nth year. And in a similar annuity deferred
m years, the first payment is to be made at the end of $\left(m+\frac{1}{2}\right)$ years and the last at the end of ($m+n$) years.
5. A continuous annuity is one which is assumed to be payable momently by infinitely small instalments.
6. An amnity of which the payments are to continue for ever is called a perpetuity. The expressions "immediate perpetuity", " perpetuity due", "deferred perpetuity", and "continuous perpetuity", are used with significations similar to those attaching to the corresponding descriptions of annuities.
7. When the successive payments of an annuity are not taken as they fall due, but are left to accumulate at compound interest, the annuity is sometimes said to be forborne. The sum of the amounts of the successive payments accumulated to the end of the period during which the annuity is payable is called the amount of the annuity. The sum of the present values of the successive payments is called the present ralue of the annuity; an annuity of which the present value is k per unit of annual rent is said to be worth k years' purchase.
8. The notation employed in the valuation of ammities-certain, of which the periodical payments are equal, is as follows:-
s_{n} denotes the amount of an immediate annuity of 1 per annum payable annually for n years.
$\varepsilon_{n 1}^{(p)} \quad$, the amount of an immediate annuity of 1 per annum payable p times a year for n years.
$\bar{s} \bar{n}$,, the amount of a continuous annuity of 1 per annum for n years.
$a_{n} \quad, \quad$ the present value of an immediate annuity of 1 per annurs prayable annually for n years.
$a_{n \mid}^{(p)} \quad$, the present vaiue if an immediate annuity of 1 per annm payajoie p times a year for n years.
$\bar{a}_{i n}$., the present value of a continuous annuity of 1 per annum for n years.
$e_{\bar{n}}$... the present value of an annuity-due of 1 per annum payable annually for n years.
$\min n$ " the present value of an annuity of 1 per annum, payable annually for n years, deferred m years.

The symbols a and ${ }_{m} \mid a$ may be qualified by the affix (p) in the same way as the symbol a. In the ease of a perpetuity, the suffix in is replaced by ∞. Thus \bar{a}_{∞} denotes the present value of a continuous perpetuity of 1 per annum.
9. The following relations obviously hold:-

$$
\begin{align*}
& a_{n}=1+a_{n-1}(1) \tag{1}\\
& \mathrm{a}^{\left(\frac{p)}{n \mid}=\frac{1}{p}+a_{n-\frac{1}{p}}^{(p)}, ~\right.} \tag{2}\\
& m_{n}|/| \bar{n}=a_{\overline{n+m}}-a_{\bar{m}} \tag{3}\\
& a_{\infty}=a_{\bar{n}}+{ }_{n} a_{\infty} \tag{4}
\end{align*}
$$

10. From the definitions given in Article S, it will be seen that the amonnt or present value of an amuity at a given rate of interest may be found by summing the amounts or present values at that rate of the successive payments. Now the amount or present value of any series of payments at a given nominal rate of interest may be found by working with the corresponding effective rate and substituting for the effective rate, in the result, its value in terms of the nominal rate. Hence the general problem of finding the amount or present value of an annuity, payable p times a year, at a nominal rate of interest convertible m times a year, resolves itself into that of finding the amount or present value at an effective rate of interest.
11. To find the amount, at the effeetive rate of interest i, of an immediate annuity of 1 per ammun payable p times a year for n years. The amount of the first payment of the annuity will be $\frac{1}{p}(1-i)^{n-p}$, that of the next $\frac{1}{p}(1+i)^{n-\frac{2}{p}}$, and so on, the ammunt of the last payment being $\frac{1}{p}$.

Hence

$$
\begin{align*}
\delta_{n}^{(p)} & =\frac{1}{p}\left[(1+i)^{n-p}+(1+i)^{n-\frac{2}{p}}+\ldots+1\right] \\
& =\frac{(1+i)^{n}-1}{j_{(p)}} \cdot \cdot \cdot \tag{5}
\end{align*}
$$

12 Tkis result may be readily obtained by general reasoning. A urit of eapital, invested at the effective rate of interest i will yield
interest amounting to $(1+i)^{\frac{1}{p}}-1$ at the end of each $\frac{1}{p}$ th of a year, or, in other words, an immediate annuity of $p\left[(1+i)^{\frac{1}{p}}-1 j\right.$ per annum, payable p times a year, for n years, and it will remain intact at the end of the period. In the alternative, if the interest be allowed to accumulate, the original unit will amount to $(1+i)^{n}$ at the end of n years. These two things must be equivalent; that is to say, if the equation of value be written down as at the end of n years,

$$
\begin{gathered}
s_{n}^{(p)} \cdot p\left[(1+i)^{\frac{1}{p}}-1\right]+1=(1+i)^{n} \\
s_{n}^{(p)}=\frac{(1+i)^{n}-1}{j_{(p)}}
\end{gathered}
$$

or, as before,
13. To find the present value, at the effective rate of interest i, of an immediate annuity of 1 per annum payable p times a year for n years.

The present value of the first payment is $\frac{1}{p} x^{\frac{1}{p}}$, that of the second $p^{1} \frac{v^{\frac{p}{p}}}{}$, and so on, the present value of the final payment being $\frac{1}{p} v^{n}$.

Hence

$$
\begin{align*}
a_{n \mid}^{(p)} & ={ }_{p}^{1}\left[v^{\frac{1}{p}}+v^{\frac{2}{p}}+\ldots+v^{n}\right] \\
& =\frac{1-v^{n}}{j_{(p)}} \cdot \cdots \cdot \cdot \cdot \cdot \cdot \cdot \tag{6}
\end{align*}
$$

14. This result may be established by reasoning very similar to that of Article 12. A unit of capital invested at the effective rate of interest i will yield an immediate annuity of $p\left[(1+i)^{\frac{1}{p}}-1\right]$ per amnum, payable p times a year for n years, and will remain intact at the end of the period. It must, therefore, be equal to the present value of such an annuity together with the present value of a unit due at the end of n years; that is to say:-

$$
\begin{gathered}
1=a_{n \mid}^{(p)} \cdot p\left[(1+i)^{\frac{1}{p}}-1\right]+v^{n} \\
n \frac{(m)}{n \mid}=\frac{1-c^{n}}{j_{(p)}} .
\end{gathered}
$$

15. The argument may also be put in the following slightly different form :-An immediate annuity of 1 per amum payable p times a year for n years is obviously equivalent to a perpetuity of 1 per annum payable p times a year less a similar perpetuity deferred n years. Now a unit will produce interest of $p\left[(1+i)^{\frac{1}{p}}-1\right]$ per annum payable p times a year, in perpetuity; therefore the present value of a perpetuity of $p\left[(1+i)^{\frac{1}{p}}-1\right]$ per annum payable p times a rear is 1 , and by simple proportion the present value of a similar perpetuity of 1 per annum is $\frac{1}{p\left[(1+i)^{\frac{1}{p}}-1\right]}$. Hence

$$
\begin{aligned}
& a_{n}^{(p)}=a_{\infty}^{(p)}-v^{n} \cdot a_{\infty}^{(p)} \\
&=\frac{1}{j_{(p)}}-v^{n} \cdot \frac{1}{j_{(p)}} \\
&=\frac{1-v^{n}}{j_{(p)}}
\end{aligned}
$$

13. In establishing the formulas for $s_{n}^{(p)}$ and $a_{n}^{(p)}$ it has been implicitly assumed that $n p$ is an interer, or in other words, that the term of the annuity eomprises an exact integral number of intervals. In order to extend the formulas to cases in which $u p$ is not an integer, it is necessary to adopt some convention as to the proportion of the periodical payment which should be paid in respect of a fractional part of an interval, say for $\frac{1}{m}$ th part of an interval, or $\frac{1}{m p}$ th of a year. For purposes of theory it is convenient to make the proportion such that the formula $a_{n!}^{(p)}=\frac{1-r^{n}}{j_{(p)}}$ may hold tor all values oif n. This convention gives

$$
\begin{align*}
c \frac{1}{\left.n+\frac{1}{m p}\right)} & =\frac{1-v^{n+\frac{1}{m p}}}{j_{(p)}} \\
& =\frac{1-v^{n}}{j_{(p)}}+\frac{v^{n}-v^{n+\frac{1}{m p}}}{j_{\left(p_{1}\right.}} \\
& =u_{n}^{(p)}+r^{n+\frac{1}{m p}} \frac{(1+i)^{\frac{1}{m p}}-1}{j_{(p)}} \tag{7}
\end{align*}
$$

from which it appears that the proportionate parment for the final $\frac{1}{m p}$ th of a year would be $\frac{(1+i)^{\frac{1}{m p}}-1}{(1+i)^{\frac{1}{p}}-1} \cdot \frac{1}{p}$, or the same proportion of the periodical parment as the interest on 1 for $\frac{1}{m p}$ th of a year is of the interest on 1 for $\frac{1}{p}$ th of a year. Subject, therefore, to the understanding that the proportion for the odd fraction of an interval is to be calculated in this way, the formula

$$
a_{n}^{(p)}=\frac{1-v^{n}}{j_{(p)}}
$$

and, by an obvious deduction, the formula

$$
s_{n}^{(p)}=\frac{(1+i)^{n}-1}{j_{(p)}}
$$

will hold for all positive values of n whether integral or fractional.
In practice the proportionate payment would be taken as $\frac{1}{\mathrm{mp}}$, and the present value of an annuity of 1 per annum payable p times a year for $\left(n+\frac{1}{m p}\right)$ years would consequently be $a_{n j}^{(p)}+\frac{1}{m p} \cdot v^{n+\frac{1}{m p}}$.
17. It will be observed that the numerators of the expressions for $s_{n}^{(p)}$ and $a_{n}^{(p)}$ are respectively the total interest on 1 in n years, and the total discount on 1 due n years hence, and that the denominator of each expression is the nominal rate of interest convertible p times a year corresponding to the given rate. It appears, therefore, that
(i) the amount of an immediate annuity of 1 per annum at a given rate of interest is the total interest on 1 in n years divided by the corresponding nominal rate of interest convertible with the same frequency as that with which the amuity is payable, and
(ii) the present value of an immediate annuity of 1 per anmum at a given rate of interest is the total discount on 1 due n years hence divided by the corresponding nominal rate of interest convertible with the same frequency as that witb which the annuity is payable.

These results are perfeetly general, for the annuity of which the amount and present value are represented by $s_{n}^{(p)}$ and $a_{n]}^{(p)}$ is the most general type of an immediate annuity payable by equal periodical instalments.
18. From formulas (5) and (6), or from the verbal expressions just given, the amount and present value, at the effective rate of interest i, of an immediate annuity of 1 per annum payable with any given frequeney, may be at once written down by assigning the appropriate value to p; from the resulting formulas the amount and present value at any given nominal rate of interest may be deduced, als already explained, by substituting for i its value in terms of the given nominal rate. For convenience of reference the general formulas and the deduced expressions for certain values of p are exhibited in the following summary :-

Amounts and Present Values of an Immediate Annuity of 1 per anmum for n years:

(a) In terms of the effective rate of interest i.

Annoity Payable	Amount	Preseat Malue
p times a year	$\begin{aligned} v_{n \mid}^{(n)}= & \frac{(1+i)^{n}-1}{j_{(p)}} \\ & =\frac{\text { Total interest on } 1}{\begin{array}{l} \text { Nominal rate of interest } \\ \text { convertible } p \text { times a a } \\ \text { year corresponding to } i \end{array}} \end{aligned}$	$\begin{aligned} a_{n}^{(n)} & =\frac{1-r^{n}}{j_{1 p}} \\ & =\frac{\text { Total discount on } 1}{\begin{array}{l} \text { Nominal rate of interest } \\ \text { convertible } p \text { times a } \\ \text { year corresponding to } i \end{array}} \end{aligned}$
$\begin{aligned} & \text { Yearly } \\ & (p==1) \end{aligned}$	$s_{n \mid}=\frac{(1+i)^{n}-1}{i} \cdot . \quad(8)$	$a_{\overline{-}]}=\frac{1-r^{n}}{i}(9)$
$\begin{aligned} & \text { Continuously } \\ & (p=\propto) \end{aligned}$	$\bar{s}_{\bar{n} \mid}=\frac{(1+i)^{n}-1}{\log _{e}(1+i)} \quad . \quad$ (10)	$\bar{a}_{\bar{n}}{ }^{-}=\frac{1-v^{n}}{\log _{e}(1+i)} \quad \cdot(11)$

(b) In terms of a nominal rate of interest j convertible m times a year.

For $(1+i)$ substitute $\left(1+\frac{j}{m}\right)^{m}$

Annuity Payable	Anoust	Present value
p times a year	$\begin{equation*} s_{n}^{(p)}=\frac{\left(1+\frac{j}{m}\right)^{m n}-1}{p\left[\left(1+\frac{j}{m}\right)^{\frac{n}{n}}-1\right]} . \tag{102} \end{equation*}$	$\begin{equation*} a_{n}^{\left(\frac{p}{}\right)}=\frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{p\left[\left(1+\frac{j}{m}\right)^{\frac{m}{n}}-1\right]} \tag{13} \end{equation*}$
$\begin{align*} & \text { Yearly } \tag{14}\\ & (p=\mathrm{i}) \tag{15} \end{align*}$	$s_{n}=\frac{\left(1+\frac{j}{m}\right)^{n \prime}-1}{\left(1+\frac{j}{m}\right)^{m}-1} .$	${\pi_{n}}_{n}=\frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{\left(1+\frac{j}{m}\right)^{m}-1} .$
m times a rear $\begin{equation*} (p=m) \tag{16} \end{equation*}$	$\begin{equation*} s_{n \mid}^{(m)}=\frac{\left(1+\frac{j}{m}\right)^{m n}-1}{j} \tag{17} \end{equation*}$	$a_{n}^{(m)}=\frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{j}$
Continuously $(p=\infty)$	$\begin{equation*} \bar{s}_{n}=\frac{\left(1+\frac{l}{m}\right)^{m n}-1}{m \log _{e}\left(1+\frac{j}{m}\right)} \tag{18} \end{equation*}$	$\begin{equation*} \bar{a}_{n}=\frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{m \log _{e}\left(1+\frac{j}{m}\right)} . \tag{19} \end{equation*}$

(c) In terms of a force of interest δ.

For $(1+i)$ substitute e^{δ}

Annuity Payable	Amount	Present Value
p times a year	$\begin{equation*} s_{n \mid}^{(p)}=\frac{e^{n \delta}-1}{p\left[e_{p}^{\delta}-1\right]} \cdot \tag{20} \end{equation*}$	$\begin{equation*} a_{n \mid}^{(p)}=\frac{1-e^{-n \delta}}{p^{\left[e^{\frac{\delta}{p}}-1\right]}} \cdot \cdot \tag{21} \end{equation*}$
Yearly $(p=1)$	$s_{n}=\frac{e^{n \delta}-1}{e^{\delta}-1} \cdot \cdots \cdot(2)$)	$a_{\bar{n}}=\frac{1-e^{-n \delta}}{e^{\delta}-1} \quad . \quad . \quad(23)$
Continuously $(p=\infty)$	$\bar{s}_{n \underline{1}}=\frac{e^{n \delta}-1}{\delta} \cdot \ldots \cdot(24)$	$\bar{a}_{\bar{n}}=\frac{1-e^{-n \delta}}{\delta} . \quad . \quad . \quad(25)$

19. If n be made infinitely great, the numerators of all the expressions on the right-hand side of the summary given in the last article becone 1 , and the resulting formulas give the present values of the corresponding perpetuities of 1 per annum. Thus the present value at the effecire rate i, of an immediate perpetuity of 1 per annum payable aunually is $\frac{l}{i}$; the present value at a nommal rate j convertible m times a year, of an immediate perpetuity of 1 per annum payable m times a year is $\frac{1}{j}$; and the present value, at a force of interest δ, of an immediate continuous perpetuity is $\frac{1}{\delta}$

20 A case of some special interest and practical importance is that in which interest is convertible with the same frequency as that with which the annuity is payable. In this case formula (13) gires

$$
a_{n!}^{(p)}=\frac{1-\left(1+\frac{j}{p}\right)^{-n p}}{j}=\frac{1}{p} \cdot \frac{1-\left(1+\frac{j}{p}\right)^{-n p}}{p}={ }_{p}^{1} a_{n p\rceil}
$$

where $a_{\overline{n p} \mid}$ is calculated at the effectice rate of interest $\frac{j}{p}$. That is, the present value, at the nominal rate j convertible p times a year, of an immediate annuity of 1 per annum payable p times a year for n years is equal to the present value, at the effectice rate $\frac{j}{p}$, of an immerliate annuity of $\frac{1}{p}$ per annum payable annually for $n p$ years. The equality of the two is at once obvious if "year" be replacec by "interval", for each then becomes the present value of a series of $n p$ payments of $\frac{1}{p}$ discounted on the assumption of compound interest at the rate of $\frac{j}{p}$ per interval.
21. It appears, therefore, that a table giving, at various effective rates of interest, the present values of amnuities of 1 per annum payable annually for various terms of years may be used (within such limits as its range allows) for finding the present value at a nominal rate of interest convertible p times a year, of an annuity payable p times a year. For example, the present value, at-4 per-cent convertible half-yearly, of an annuity of 1 per amum payable half-yearly for n years may be found by taking one-half the present value, at 2 per-cent
effective, of an ammity of 1 per annum for $2 n$ years. In symbols:$a_{n}^{(2)}$ at 4 per-cent convertible half-yearly $=\frac{1}{2} \alpha_{\overline{2 n} \mid}$ at 2 per-cent effective.

In general, a table of the present values of immediate annuities at various effective rates of interest may be looked upon as a table of the values of $\frac{1-(1+x)^{-n}}{x}$, and may be used for any purpose for which the value of this function may be required. A similar extension may obviously be given to the application of a table of amounts.
22. Tables giving the present ralues and amounts, at varions effective rates of interest, of an annuity of 1 per aminum payable annually may also be convenient!! used for calculating the present values and amounts, at the same effective rates, of a similar annuity payable p times a year. For an immediate annuity of 1 per annum payable p times a year is obviondy equivalent to an amnuity of $s_{1}^{(p)}$ per annum, payable annually, that is:-

Whese results follow at onee, algebraically, from a comparison of formulas (5) and (6) with formulas (S) and (9). The factor $\frac{i}{j_{(p)}}$ is independent of n, and the values of $u_{n \mid}^{(n)}$ and $s_{n \mid}^{(m)}$ at a given effective rate may, therefore, be found, for any value of n, by multiplying the tabulated values of $a_{\bar{n}}$ and $s_{x 1}$, at that rate, b_{y} a factor which is constant for a given value of p. A table of the values of $\frac{i}{j(p)}$ for those salues of i and p which oceur most frequently in practive is given on p. 2!2l.
23. Although the formulas exhihited under (b) and (c) in Article 18 have been deduced from the general formulas expressed in terms of the effective rate they may of course be used without any direct referenee to an effective rate. If in any given case it is necessary to calculate the
present value or amount of an annuity without the aid of interest tables, the proper formula to employ will be that one in which the rate of interest-whether eflective or nominal - to be employed in the calculation can be directly inserted; for example, if it were required to find the amount of $\dot{4}$ continuous annuity of 1 per annum for 20 years at 4 percent convertible momently - that is, at a foree of 4 per-cent-the result, by formula (24), would be $\frac{e^{3}-1}{\cdot 04}$, which may be evaluated by taking the anti-logarithm of $\frac{4}{5}$ ths of the common logarithm of e, deducting 1 , and dividing the result by 04 . Precisely the same result would, of course, be obtained by first calculating the effective rate corresponding to the specified force of interest, and then employing the formula givins the amount of an annuity in terms of an effective rate; for $\overline{s_{20}}$ at a foree of interest of 4 per-cent $=\bar{s}_{\overline{-0}}$ at the effective rate $\left(e^{\cdot 04}-1\right)$ which, by formula (10), $=\frac{\left[1+\left(e^{\cdot 04}-1\right)\right]^{20}-1}{\log _{e}\left[1+\left(e^{04}-1\right)\right]}=\frac{e^{-8}-1}{\cdot 04}$ as before. It is obviously a much shorter process to use the appropriate formula-No. (24) -without any direct reference to the effective rate corresponding to the given force.

When, however, the appropriate tables of $a_{\bar{n} \mid}$ and $\frac{i}{j_{(p)}}$ are available, it will generally be more convenient to make use of the relations expressed by formulas (28) and (29). For example, the present value, at 5 per-cent convertible half-yearly, of an annuity of 1 per annum payable quarterly for 20 years $=$, by Article 20 and formula (28), $\frac{1}{2} a_{40 \mid} \times \frac{i}{(p)}$ where $i=025$, which by Table IV, p. 218, and Table VII, p. $221,=12.5514 \times 1 \cdot 00621$, or $12 \cdot 629$; the same result could of course be obtained from tormula (13) by evaluating $\frac{1-(1025)^{40}}{4\left[(1 \cdot 02.5)^{\frac{1}{2}}-1\right]}$. Similarly, the amount at 4 per-cent effective of a continuous annuty of 1 per annum for 20 years could be obtained from formula (10) by evaluating $\frac{(1 \cdot 04)^{20}-1}{\log _{e}(1 \cdot 04)}$; but with the aid of 'lables III and VII its value is more conveniently obtained from the expres-ion $s_{20} \times \frac{i}{\delta}$, which gives as the requisite value $29 \cdot 7781 \times 1 \cdot 01987$, or $30 \cdot 370$.
24. By assigning to p, in formulas (5) and (6), a fractional value, say $\frac{1}{j}$, expressions may be obtained for the amount and present value of
an annuity of 1 per annum payable every r years, that is, of an annuity under which a payment of r is made at the end of every r th year. Thas

$$
\begin{equation*}
\stackrel{\left(\frac{1}{r}\right)}{s_{\bar{n}}}=\frac{r\left[(1+i)^{n}-1\right]}{(1+i)^{r}-1}=r s_{\bar{n}}^{\bar{n}} \cdot \frac{2}{(1+i)^{r}-1}=\frac{r \cdot s_{\bar{n}} \overline{s_{\bar{r}}}}{\left(1+\frac{1}{r}\right.} \tag{30}
\end{equation*}
$$

and $\quad a_{\bar{n}}^{\left(\frac{1}{r}\right)}=\frac{r\left[1-r^{\prime \prime}\right]}{(1+i)^{r}-1}=r a_{\bar{n}} \frac{i}{(1+i)^{r}-1}=\frac{r a_{\bar{n}}}{s_{r}}$.
from which it follows that the amount and present value of an annuity of 1 , payable every r years throughout a period of n years are $\frac{s_{n}}{s_{\bar{\eta}}}$ and $\frac{a_{n}}{s_{\bar{n}}}$ respectively. If n be an exact multiple of r, these results may be verified by obrious general reasoning or by actual summation of the sums of the amounts and present values of the suceessive payments. If n be not an exact multiple of r, they involve the same assumption as that made in Article 16, namely, that the payment to be made at the end of the nth year in respect of the final perind of, say, t years (where t is $\langle r$), bears the same ratio to 1 as the total interest on 1 for t years bears to the total interest on 1 for r years.
25. A practical application of the formulas of the preceding article occurs in connection with leases subject to periodical renewal on payment of a fine. In the general case of a lease renewable at the end of $(t+r)$ years, and at the end of every subsequent r years during a total period of n years (where n may be assumed to be an exact multiple of r), on payment, on the occasion of each renewal, of a fine F , the series of fines will constitute an annuity of F payable every r years for a period of n years deferred t years, and their present value will, therefore, be
or

$$
\begin{aligned}
& \mathrm{F} \cdot v^{t} \frac{a_{n} \bar{n}}{s_{r_{1}}}, \\
& \mathrm{~F} \frac{a \overline{n+t}-a_{t}}{s_{\bar{n}}} .
\end{aligned}
$$

The only case of much practical importance is that in which the lease is renewable every r years in perpetuity. In this case the expression for the present value of the future fines reduces to $\mathrm{F} \frac{v^{t}}{i s_{r}{ }_{r}}$. This formula is based on the assumption that the first fiue falls due at the end of $(t+r)$ years. If the first fine is payable at the end of t years, so that the series of fines constitutes a deferred perpetuity-due instead of an
ordinary deferred perpetuity, the formula for the present value will, of course, be
or

$$
\begin{align*}
& \mathrm{F} v^{t}\left(1+\frac{1}{i s_{n}}\right) \\
& \mathrm{F} \cdot \frac{v^{t}}{1-v^{r}} \cdot \tag{32}
\end{align*}
$$

26. The foregoing investigations relate exclusively to amuities of a uniform annual rent. It remains to consiler the problem of valuing Parfing Annuties, that is, annuities of which the periodical payments are not all equal. It is, of course, necessary that either the actual amounts of all the payments, or the law by which they may be calculated, should be given. An obvious method of procedure is to calculate separately the present values of the successive payments and to take the sum of the results, and in some cases, where the payments are few in number and do not follow any simple law, this will be the simplest course to adopt. But this method would obviously entail great labour if the number of payments were large, and it is therefore convenient to investigate general formulas applicable to the more important classes of cases that may occur in practice. For purposes of investigation, annuities payable annually need alone be considered, as the resulting formulas may be applied to annuities payable with any other frequency by appropriately changing the unit of time and the rate of interest.
27. Nany simple varying annuities may be valued by elementary algebraical methods.
28. Take, for example, the case of an amuity of which the successive payments increase or decrease in arithmetic progression. Let p be the first payment, q the common difference of the series of payments, and a the present value of the ammity for n years. Then

$$
a=v p+v^{2}(p+q)+v^{3}(p+2 q)+\ldots+v^{n}(p+\overline{n-1} q)
$$

and

$$
a v=v^{2} p+v^{3}(p+q)+\ldots+v^{n}(p+\overline{n-2} q)+v^{n+1}(p+\overline{n-1} q)
$$

\therefore by subtraction, iva $=v p+v^{2} q+v^{3} q+\ldots+v^{n} q-v^{n+1}(p+\overline{n-1} q)$

$$
=p \cdot v\left(1-v^{n}\right)+q v \cdot \mu \bar{n}-n q v^{n+1}
$$

whence

$$
\begin{equation*}
a=p a_{n \mid}+q \frac{a_{\bar{n}}-m n^{n 2}}{i} . \tag{33}
\end{equation*}
$$

If n be made infinite, $a_{\bar{n}}$ becomes a_{∞}, the value of wheh is $\frac{1}{i}$; and $n v^{n}, \quad$ being $=\frac{n}{(1+i)^{n}}, \quad$ or $\frac{1}{\frac{1}{n}+i+\frac{n-1}{2!} i^{2}+\frac{(n-1)(n-2)}{3!} i^{3}+\ldots,}$
vanishes. Hence the present value of a perpetuity of which the first payment is p, and the subsequent payments increase in Arithmetical Progression with a common difference q, is

$$
\begin{equation*}
\frac{p}{i}+\frac{q}{i^{2}} \tag{34}
\end{equation*}
$$

This result might have been obtained by dividing the perpetuity into one of the uniform rent p, and another of which the successive payments are $0, q, 2 q$, \&e. The present value of the former is $\frac{p}{i}$, and that of the latter is $q v^{2}+2 q v^{3}+\ldots$ ad inf. Now the infinite series $\left(1+2 v+3 v^{2}+\ldots\right)$ is the expansion of $(1-v)^{-2}$. Therefore

$$
q v^{2}+2 q v^{3}+\ldots a d \text { inf }=\frac{q v^{2}}{(1-v)^{2}}=\frac{q}{i^{2}}
$$

and the present value of the entire perpetuity is, as before, $\frac{p}{i}+\frac{q}{i^{2}}$
In this connection it may be pointed out that whenerer the successive payments of an annuity or perpetuity can be identified with the coefficients of the successive terms of a binomial expansion, the present value of the anmity or perpetuity may be at once obtained. Thus, the present value of an annuity-due for $(n+1)$ years, whose successive payments are the coefficients of the powers of x in $(1+x)^{n}$ wonld be $(1+v)^{n}$, and the present value of a perpetuity whose suceessive payments are $r, \frac{r(r+1)}{2!}, \& c$. , would be $(1-r)^{-r}-1$ or $\frac{1}{i^{r} r^{r}}-1$.
29. The annuity whose successive payments are $1,2,3$, \&c., is sometimes called an Increasing Annurty without definition of the nature of the inerease, and its present value is denoted by the symbol (la). From the foregoing it will be seen that

$$
\begin{equation*}
(\mathrm{I} a)_{\bar{n}}=a_{n} \left\lvert\,+\frac{a_{\bar{n}}-n v^{n}}{i}\right. \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
(\mathrm{I} a)_{\infty}=\frac{1}{i}+\frac{1}{i^{2}} . \tag{36}
\end{equation*}
$$

30. Next consider the case of an annuity of which the payments increase in Geometric Progression, and let k be the first payment and r° the common ratio of the series of payments. Then the present value of the annuity for n years

$$
\begin{aligned}
& =k r+k \cdot r^{2}+k r^{2} v^{3}+\ldots+k r^{n-1} v^{n} \\
& =k v \frac{1-r^{n} v^{n}}{1-r v} \text { or } \frac{1-r^{n} v^{n}}{1+i-r}
\end{aligned}
$$

The present value of the corresponding perpetuity will be $\frac{k}{1+i-r}$ if r is $<1+i$, and an infinitely large quantity if r be $=$ or $>1+i$. If $r v$ be put $=v^{\prime}$, so that $i^{\prime}=\frac{1+i}{r}-1$, the expression $k v \frac{1-r^{n} e^{n}}{1-r e}$ takes the form $\frac{k}{r} v^{\prime} \frac{1-v^{\prime n}}{1-v^{\prime}}$ or $\frac{k}{r} a^{\prime} \pi$. Or, alternatively, if $r v$ be put $=1+i^{\prime \prime}$, so that $i^{\prime \prime}=\frac{r}{1+i}-1, \quad i v \frac{1-r^{n} c^{n}}{1-r v}$ takes the form $k v s^{\prime \prime} \bar{n} \cdot$. Hence it appears that the present value at rate i of an annuity of which the first payment is k, and the subsequent payments increase in Geometric Progression with the common ratio r is equal to the present value at rate l^{\prime} of an ordinary annuity of $\frac{k}{r}$ per annum, where $i^{\prime}=\frac{1+i}{r}-1$, or to the amount at rate $i^{\prime \prime}$ of an ordinary annuity of $k v$, where $i^{\prime \prime}=\frac{r}{1+i}-1$.

When the value of r is such that the resulting value of i^{\prime} or $i^{\prime \prime}$ comes within the range of rates of interest for which the present values or amounts of annuities are tabulated, the relations just established afford a convenient means of obtaining approximately, without the labour of actual calculation, the present value of an increasing ammity. The first relation will of course be applicable when r is $<1+i$, and the second when r is $>1+i$.
31. As an example of the subject discussed in the foregoing article, suppose that a company applies its surplus profits, after declaring a certain lixed rate of dividend on its ordinary shares, to the allotment to its ordinary shareholders of further shares, and that it is required to find the present value, at say 5 per-cent, of the dividends for the next ten years in respect of a present holding on which a dividend of k has just been paid, on the assumption that the annual allotment of new shares
will be at the rate of two per-cent on the total number of shares existing at the date of each allotment. Here the dividends will form an amuity of which the payments increase in Geometrie Progression with a common ratio of 1.02 , and i^{\prime} will $=\frac{1 \cdot 05}{1.02}-1$ or $\cdot 0.3$ approximately. The present value of the divilends will, therefore, be roughly $k \times a_{10}$ at three per-cent $=k \times 8 \cdot 53$. The true value obtained by the formula $k(1.02) \cdot \frac{1-(1.02)^{10} c^{10}}{1 \cdot 05-1 \cdot 02}$, would be $k \times 8.56$.
32. The practical utility of replacing an increasing (or decreasing) annuity by an ordinary annuity at a changed rate of interest will be limited to those cases in which the rate of increase (or decrease) is only fractionally greater (or less) than 1 . If $r=1+i$, the rate of increase exactly counteracts the rate of discount, and the present value of the increasing annuity becomes that of an ordinary annuity of $\frac{k}{r}$ calculated on the assumption that money yields no interest, that is to say, in the case of an annuity to continne for n years, $\frac{n k}{r}$. If r is $>1+i, i^{\prime}$ becomes negative. This, of course, means that the rate of inerease more than counteracts the rate of discount, so that the present values of the successive payments of the increasing amuity form a series of increasing quantities. In each of the last two cases the present value of the inereasing perpetuity will obviously be infinitely great.
33. A class of varying annuities of a more general type than either of those discussed in the preceding artieles-and one which, in fact, includes most of the varying amuities that arise in practice-is that in which the successive payments form a series of which the rth term is a rational integral function of r. If the function be assumed to be of the m th order, the present value of an n-year annuity of this type may be written in the form

$$
\underbrace{r=n}_{r=1}\left(a_{0}+a_{1} r+a_{2} r^{\cdot 2}+\ldots+a_{m} r^{m}\right) r^{r \cdot}
$$

34. The summation of this series in any given ease may be effected by repeated multiplications by $I-v$ or $i x$, for it is obvions that each multiplication by this factor will reduce the order of the function by unity. Take, for example, the case of an annuity whose successive
payments are the 2nd powers of the natural numbers. Here

$$
\begin{aligned}
a & =1^{2} v \cdot+2 v^{2}+3^{2} v^{3}+\ldots+n^{2} \cdot v^{n} \\
a(1-v) & =1 v+3 v^{2}+5 v^{3}+\ldots+(2 n-1) v^{n}-n^{2} v^{n+1} \\
a(1-v)^{2} & =v+2 r^{2}+2 v^{3}+\ldots+2 v^{n}-\left(n^{2}+2 n-1\right) v^{n+1}+n^{2} v^{n+2} \\
a & =\frac{2 a_{n}-v-\left(n^{2}+2 n-1\right) v^{n+1}+n^{2} v^{n+2}}{i^{2} v^{2}}
\end{aligned}
$$

If n be made infinitely great, this expression reduces to

$$
\frac{\frac{2}{i}-v}{i^{2} v^{2}} \text { or } \frac{r(1+v)}{(1-v)^{3}}
$$

The infinite series $1^{2}+2^{2} v+3^{2} \iota^{2}+1^{2} v^{3}+\ldots$ is, in fact, the expansion of $(1+v)(1-v)^{-3}$ in powers of v.
35. When, as in the example just given, the function is of a low order-say the 2nd or Brd-the process of reduction by successive multiplications by $1-v$ does not entail much labour. For functions of higher orders, and for the development of the general theory, a different method of procedure must be adopted. This method, which involves the use of the ealculus of finite differences, is discussed in Chapter X.

CHAP'TER IV.

Analysis of the Annuity.

1. In the preceding chapter the annuity has been considered as a given series of payments, of which it is required to find the present value or amount at a specified rate of interest. Conversely it may be regarded as the equivalent, in the form of a serits of future payments, of a given present value or principal. Thus, an annuity of 1 per annun payable p times a year for n years is the equivalent, at the effective rate of interest i, of a given principal of $\frac{1-v^{n}}{j_{(p)}}$. Hence, an investor proposing to purchase an n-year anuuity payable p times a year, and intending to realize interest on the transaction at the effective rate i, would expect to receive $\frac{1}{a_{n}^{(p)}}$ per annum for each unit invested. Similarly, the vendor of such an annuity, if willing to sell at a net price calculated at the effective rate i, would be prepared to give an annuity of $\frac{1}{a_{n \mid}^{(\underline{j} \mid}}$ per annum for each unit of the purchasc-money. Investment transactions involving the payment of an amuity frequently occur in practice, and it becomes important, therefore, to analyze the successive payments of the annuity in order to determine how they should be dealt with, on an investment basis, by the respective partics to the transaction.
2. In the first phace, the present value of an annuity may be regarded as a fund which, if accumulated at the assumed rate of interest, will exactly provide the successive parments of the annuity as
they fall due. In the case of an ordinary amuity-certain payable annually

$$
\begin{equation*}
(1+i) a_{\bar{n}}=1+v+v^{2}+\ldots+v^{n-1}=1+a_{n-1} . . . \tag{1}
\end{equation*}
$$

and in the case of a similar amuity payable p times a year

$$
\begin{equation*}
(1+i)^{\frac{1}{p}} a_{21}^{(p)}=\frac{1}{p}\left\{1+v^{\frac{1}{p}}+v^{\frac{2}{p}}+\ldots+v^{n-\frac{1}{p}}\right\}=\frac{1}{p}+a^{\frac{(p)}{n-p_{p}}} \tag{2}
\end{equation*}
$$

These relations are merely the algebraical expression of what must obviously be the case, namely, that the accumulated amount of the purchase-money at the end of the first interval will provide the payment then due and leave in hand a fund equal to the present value of the anuuity for the remainder of the term. Similar relations will ciearly obtain for the second and subsequent intervals, until just after the last payment but one the fund will be reduced to $a_{\overline{1}}$ or $a \frac{(p)}{\frac{1}{p}}$, as the case may be, which will exactly provide the final payment. It appears, therefore, that by investing the purchase-money at the effective rate i, and by keeping the residue of the fund, as diminished from time to time by the periodical parments, strictly invested at that rate, the vendor or grantor of the amnity will be enabled to meet the successive payments, while from the point of view of the purchaser or grantee the transaction is essentially the same as if he placed his principal on deposit, on the basis of interest at the effective rate i being allowed from time to time on the balance standing at his credit, and withdrew at the end of every year or $\frac{1}{p}$ th of a year, as the case may be, an amount equal to the periodical payment of the aunuity.
3. In the next place, an annuity may be regarded as a means of liquidating a debt carrying interest at the assumed rate, the original sum owing being the present value of the ammity. From this point of view each payment may be considered as consisting partly of interest on so much of the debt as was outstanding after the last preceding payment and partly of a repayment of principal.

In the general case of a debt of $a \frac{(p)}{n \mid}$ which is to be repaid, with interest at the effective rate i, by an amuity of 1 per annum payable p times a year, the interest for the first $\frac{1}{p}$ th of a year will be
$\left\{(1+i)^{\frac{1}{p}}-1\right\}_{n}^{(p)}$, which $=\frac{1-v^{n}}{p}$. Hence the principal contained in the first payment of the annuity will be $\frac{1}{p}-\frac{1-r^{n}}{p}$, or $\frac{v^{n}}{p}$. And the principal outstanding after this payment will be $a^{(p)}-\frac{v^{n}}{p}$, which $\left.=a \frac{(p)}{n-\frac{1}{p}} \right\rvert\,$ Similarly, the interest for the second $\frac{1}{p}$ th of a ycar will be $\left\{(1+i)^{\frac{1}{p}}-1\right\} a \frac{(p)}{n-\frac{1}{p}}$, which $=\frac{1-v^{n-1}}{p}$; the principal contained in the second payment will be $\frac{1}{p}-\frac{1-v^{n-\frac{1}{p}}}{p}$, or $\frac{v^{n-\frac{1}{p}}}{p}$, and the principal outstanding after this payment will be $a \frac{(p)}{\left.n-\frac{1}{p} \right\rvert\,}-\frac{v^{n-\frac{1}{p}}}{p}$, which $=a^{(p)} \frac{(2)}{n-\frac{2}{p}}$. By proceeding in this way, the successive payments of the annuity may be divided into their component elements of interest and principairepayments in the manner shown in the following schedule:

No. of interval	Principal owing at beginuing of interval	$\begin{aligned} & \text { Interest } \\ & \text { for } \\ & \text { interval } \end{aligned}$	$\begin{gathered} \text { Principal } \\ \text { repaid at } \\ \text { end of interval } \end{gathered}$
1	$a_{n i}^{(m)}$	$\frac{1}{z^{\prime}}\left(1-v^{n}\right)$	$\frac{r^{n}}{p}$
2	$a_{n-\frac{1}{(p)}}$	$\frac{1}{p}\left(1-v^{n-\frac{1}{p}}\right)$	$\frac{r^{n-\frac{1}{p}}}{p}$
:			:
$n p$	$\begin{aligned} & 4\left(\frac{p}{(p)}\right. \\ & \frac{1}{2} \\ & \hline 1 \end{aligned}$	$\frac{1}{p}\left(1-v_{p}^{1}\right)$	$\frac{1}{p}$

The final repayment of $\frac{r^{\frac{1}{p}}}{p}$ pays off the balance of $a \frac{(p)}{\frac{(p)}{p}}$ owing at the beginning of the $n p$ th interval, and the successive principal-repayments in the final column add up, as they ought to do, to the original amount of the debt, namely, $a_{n_{1}}^{(\eta)}$.

In the special case in which $p=1$, the schedule will stand as follows:

Year	Principal owing at beginning of year	Interesi for year	Principal repaid at end of year
1	$a_{\bar{n}!}$	$1-r^{n}$	v^{n}
2	"n-1]	1 - n^{n-1}	v^{n-}
:			:
n	97	$1-v$	v
'Total principal repaid		\cdots.	a_{n}

4. On reference to the schedules given in the last article it will be seen that the successive repayments of principal are in Geometrical Progression with a common ratio of $(1+i)^{\frac{1}{p}}$ in the one case (where the annuity is payable p times a year), and of $(1+i)$ in the other (where the annuity is payable annually). It may be readily shown that when a debt is being repaid by an annuity of equal periodical payments, the successive repayments of principal must necessarily increase in Geometrical Progression. For let $\frac{\mathrm{C}_{\frac{m}{p}}}{}$ denote the principal included in the m th payment of an annuity of 1 per annum payable p times a year. Then the repayment of this amount will reduce by $\mathrm{C}_{\frac{m}{p}}$, the outstanding principal upon which interest has to be charged. Consequently the interest included in the $(m+1)$ th payment will be less by $\left\{(1+i)^{\frac{1}{p}}-1\right\} C_{\frac{m}{p}}^{p}$ than that included in the m th payment. Therefore, the principal included in the $(m+1)$ th payment-being the balance thercof after deduction of interest for the interval-will be greater by $\left\{(1+i)^{\frac{1}{p}}-1\right\}_{\frac{m}{\nu}}$ than that included in the m th payment. That is to saly,
or

$$
\begin{align*}
& \mathrm{C}_{\frac{m+1}{p}}=\mathrm{C}_{p}^{m}+\left\{(1+i)^{p}-1\right\}^{1} \mathrm{C}_{\frac{m}{p}} \\
& \mathrm{C}_{\frac{m+1}{p}}=(1+i)^{1} \mathrm{C}_{\frac{m}{n}} \quad . \quad . \tag{3}
\end{align*}
$$

5. The relation between the principal repayments suggest.s an instructive method of finding the present value of an annuity-certain. For, since the successive repayments of principal form a Geometrical lrogression with a common ratio of $(1+i)^{\frac{1}{p}}$ it follows that

$$
\begin{equation*}
\mathrm{C}_{n}=(1+i)^{n-\frac{1}{p}} \mathrm{C}_{\frac{1}{p}} \quad . \quad . \quad . \tag{4}
\end{equation*}
$$

Now $\mathrm{C}_{\frac{1}{p}}$, being the principal included in the first payment of the annuity, is $=\frac{1}{p}-\left\{(1+i)^{\frac{1}{p}}-1\right\}^{a_{n}^{(p)}}$. And, since the final payment of the annuity must exactly suffice to repay the principal outstanding at the beginning of the final interval together with interest thereon, it follows that

$$
\frac{1}{p}=(1+i)^{\frac{1}{p}} \mathrm{C}_{n}
$$

Substituting for C_{n} and $\mathrm{C}_{\frac{1}{p}}$ in (1)

$$
\begin{gathered}
\frac{1}{p} v^{n}=\frac{1}{p}-\left\{(1+i)^{\frac{1}{p}}-1\right\} a_{n \mid}^{(p)} \\
a_{n \mid}^{(p)}=\frac{1-r^{\prime n}}{j_{(p)}}
\end{gathered}
$$

whence
6. It will be observed that the schedules of Article 3 give not only a law of relation between the successive repayments of principal, but also their absolute values. Thus:-

$$
\begin{equation*}
\mathbf{C}_{p}^{n}=\frac{1}{p} v^{n-\frac{m-1}{p}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{C}_{m}=v^{n-m+1} \tag{6}
\end{equation*}
$$

It follows, therefore, that any given payment of au annuity may be resolved into its component erements of principal and interest without reference to a complete schedule showing the respective amounts of principal and interest contained in each payment. Thus in the general case of a debt of $a_{n}^{(p)}$ repayable with interest at the effective rate i by an annuity of 1 per annum payable p times a jear:-

The Principal contained in the m th payment $=\frac{1}{p} \iota^{n-\frac{m-1}{p}}$,
The Interest contained in the m th payment $=\frac{1}{p}\left(1-v^{n-\frac{m-1}{p}}\right)$,
$\left.\begin{array}{r}\text { And the Outstanding Principal just after } \\ \text { the } m \text { th payment }\end{array}\right\}=a_{\left.n-\frac{m}{p} \right\rvert\,}^{(n)}$.
7. In practice loans are often made on the basis of the principal, with interest at an agreed rate, being repaid by a terminable annuity. This mode of repayment is specially authorised or prescribed by Act of Parliament in certain cases, where loans are raised by local authorities on sccurity of the rates or by life-temants of settled estates for improvement purposes, and it is also not infrequently adopted when money is advanced on mortgage of depreciating securities such as leaschold property.

In transactions of this nature a nominal rate of interest convertible half-yearly is usually charged, and the principal, with interest at that rate, is made repayable by an annuity payable half-yearly. If K be the amount of the loan, n the number of years over which the payments are to extend, and j convertible half-yearly, the rate of interest to be paid, then the uniform half-yearly payment to be made by the borrower will evidently be $\frac{\mathrm{K}}{\overline{a_{2 n}}}$ where the annuity-value is to be taken at the effective rate $\frac{j}{2}$; the principal and interest included in the m th halfyearly payment will be $\frac{\mathrm{K} v^{2 n-m+1}}{a_{2 n}}$ and $\frac{\mathrm{K}}{a_{\overline{2 n}}}\left(1-v^{2 n-m+1}\right)$ respectively, and the principal outstanding just after the m th payment will be $\frac{\mathrm{K} a \overline{2 n-m}}{a \overline{2 n}}$; where all the quantities are taken at the effective rate $\frac{j}{2}$. The transaction, in fact, takes the form of the liquidation of a delt of K by means of an annuity extending over \mathscr{Q}_{n} intervals, interest being at the effective rate of $\frac{j}{2}$ per interval.
8. The successive payments of the amuity, in such transaetions as those discussed in the last article, are subject to income-tax only to the extent of the interest element contained in them. It is usual, therefore, to insert in the deed creating the security a schedule showing the amounts of interest and prineipal respectively contained in each payment. If the borrower has the right to pay off the balarice of the
loan at any time during its currency-or, in other words, to redeem the remainder of the ammity on payment of a sum equal to the present value of the remaining payments calculated at the rate of interest payable on the loan-the sehedule also serves the purpose of showing the amount parable on redemption at the end of each interval; if the borrower has no such right of redemption, and is entitled to re-purchase the remainder of the annuity only on terms acceptable to the lender or fixed by the deed, then the schedule must be regarded merely as showing how the amount oí interest contained in each payment is arised at, and not as fixing the amount of principal repaid. From the foregoing analysis it appears that the schedule might be constructed in any of the three following ways:-
(i) by the method of Article 3-that is, by calculating the interest for the first interval, deducting the result from the periodical annuity-payment in order to find the amount of principal contained in the first payment of the annuity, deducting this amount from the original debt and so obtaining the principal outstanding at the beginning of the second interval, calculating the interest for the second interval, and so on, from interval to interval.
(ii) by calculating in the first instance the complete column of principal-repayments, and obtaining therefrom, by subtraction, the columns of interest and outstanding principal. The principal repayments may be calculated either by reference to the fact that they form a series in Geometrical Progression (Art. 4), or by multiplying the periodical annuity-payment by the successive values of $v^{n-\frac{m-1}{p}}$ (Art. 6) or, again, since

$$
\frac{1}{p} v^{n-\frac{m}{p}}=\frac{1}{p} v^{n-\frac{m-1}{p}}+\frac{(1+i) \frac{1}{p}-1}{p} v^{n-\frac{m-1}{p}}
$$

by calculating their differences by multiplication of $\left\{(1+i)^{\frac{1}{p}}-1\right\}$ times the periodical annuity-payment by the successive values of $v^{n-\frac{n-1}{p}}$, and then obtaining the successive repayments by addition. Thus, in the practical case considered in Art. 7, the column of principal repayments could be obtained
(a) by calculating the first repayment, viz., $\frac{\mathrm{K}}{a_{2 n}} v^{2 n}$ or $\frac{\mathrm{K}}{a_{2 n}}-\frac{j}{2} \mathrm{~K}$, and then obtaining the subseguent
repayments by repeated multiplications by the common ratio $\left(1+\frac{j}{2}\right)$, or
(b) by multiplying $\frac{\mathrm{k}}{a_{2 n}}$ by $v^{2 n}, r^{2 n-1}$, \&c., successively, or
(c) by calculating the differences by multiplication of $\frac{j}{2} \frac{\mathrm{~K}}{a_{2 n}}$ by $r^{2 n}, r^{2 n-1}$ \&c., successively, and then obtainng the second repayment from the firstcalculated as in (a)-and each subsequent repayment. from that preceding it, by the addition of these differences.
(iii) by constructing in the first instance the column showing the principal outstanding at the begimning of each interval, and obtaining the other two columns by subtraction. The successive amounts of principal outstanding may of course be obtaining by multiplying the periodical annuity-payment by the successive values of $a_{n-\frac{m}{p}}^{(p)}$, or, in the practical case of

In theory it is a matter of indifference which of these methods is employed, but in practice it will be desirable to select that one whieh, with the least expenditure of labour, minimizes the error resulting from the necessary limitation of the number of decimal μ laces retained in the calculations. From this point of view the third method is inadmissibleon account of the comparatively large numerical values of the factors which have to be multiplied together to obtain the successive valucs of the outstanding principal-but any of the other methods may be used (subject, as regards ii (b) and ii (c), to a table of v^{n} to a sufficient number of places to ensure approximate accuracy in the last working-place retained being available) and their relative merits will depend on various practical considerations. Methods ii (b) and ii (c) lend themselves conveniently to the use of the arithmometer, because $\frac{\mathrm{K}}{a_{\overline{2 n}}}$ in the one case or $\frac{j}{2} \frac{\mathrm{~K}}{2} \mu_{\mathrm{In}}$ in the other can be set up on the fixed plate for the whole series of multiplications by r^{n}; they do not involse any accumulating errur, as the successive repayments or their differences are independently obtained, but on the other hand in the case of (b) the accuracy of any particular repayment does not prove that of the preceding repayments; of the two
methods (c) has the allantages that the multiplicand is mueh smaller, so that fewer places are required in r^{n}, and that each product would be automatically added to the lant principal-repayment, so that it woukd not be necesary to clear the slide after each operation. In many eases, howerer-especiatly when the half-yearly rate of interest is such that the half yearly interest can be written down from the ontstanding principal without any subsidiary calculations-it will be foum most convenient to adopt method (i), checking the work at intervals by calculating independently, and inserting on the working sheet at the outset, periodical values of the principat-repayments and outstanding principal ; if every tenth value be inserted, it will be sufficient to retain, in working, one more place of decimals than the number required in the final schedule. Whichever method be adopted it will as a rule be necessary to adjust the final figures by inspection.

The process of construction may be illustrated by the following example: A loan of $£ 1,000$ is to be repaid in five years, with interest at 4 per-cent convertible half-yearly, by equal half-yearly instalnents including principal and interest. It is required to construct a schedule showing, to three places of decimals, the amounts of principal and interest respectively contained in each half-yearly payment.

The half-yearly payment will be $\frac{1000}{a_{\overline{10}}}$, where the annuity-value is calculated at 2 per-cent, that is 1I1.32653... If method (i) be emplosed, it will not be necessary to insert any intermediate values-as the term of repayment extends over only ten half-years-and the entire calculations will be as shown by the following working-schedule :

$\begin{gathered} \text { Half-year } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Ontstanding } \\ & \text { Principal } \\ & \text { at beginning of } \\ & \text { Half-year } \end{aligned}$	Interest for Half-year	$\begin{aligned} & \text { Principal } \\ & \text { contained in } \\ & \text { Payment for } \\ & \text { Half-year } \end{aligned}$
1	$1000 \cdot 0000$	20.0030	$91 \cdot 3265$
2	908.6735	18.1735	$93 \cdot 1531$
3	815.5204	163101	95.0161
4	7205043	14.4101	969164
5	f20 3589	$12 \cdot 4718$	98.8548
6	524\%331	$10 \cdot 4947$	$100 \cdot 8318$
7	$423 \cdot 9013$	8.4780	$102 \cdot 8485$
8	321.0528	6.4211	1019055
9	216.1473	4:3229	$107 \cdot 0036$
10	$109 \cdot 1437$	$2 \cdot 1829$	$109 \cdot 1136$
			499.8999

The process in this case is continuous; each half-year's interest is calculated on the principal outstanding at the beginning of the year, and the principal-repayment for the half-year is obtained by deducting the interest from the half-yearly anmity-payment-the latter being taken as $111 \cdot 3266$ for every third interval, beginning with the second, in order to allow for the 3 neglected in the third place of deeimals. Consequently the approximate accuracy of the whole of the working is checked by the practical identity of the final principal-repayment with the prineipal ontstanding at the begimning of the last half year.

If method ii (c) be employed the differences of the successive principal repayments must be calculated by multiplying $\frac{j}{2} \frac{\mathrm{~K}}{2 a_{\overline{2 n}}}$, that is $2 \cdot 22653$ by $v^{10}, v^{9}, \& c$. It will be sufficient to take the latter to five places, and the results will be as follows:

$\begin{aligned} & \text { Half-year } \\ & \text { No. } \end{aligned}$	Differences of Principal repaymeuts*	Principal repayment
1	1.8265	91.3265
2	$1 \cdot 8631$	$93 \cdot 1530$
3	1-9003	$95 \cdot 0161$
4	$1 \cdot 9383$	96.9164
5	1.9771	$98 \cdot 8547$
6	$2 \cdot 0166$	100.8318
7	$2 \cdot 0570$	102.8484
8	$2 \cdot 0981$	1019054
9	$2 \cdot 1401$	107.0035
10	...	$109 \cdot 1436$
		$995 \cdot 9044$

Here, again, the process of calculation is contimous, so that the last principal-repayment proves the rest. If, however, method ii (b) had been employed -in which ease it would have been necessary to take v^{n} to seven places-the check would have been the approximate identity of the sum of the repayments with the amount of the loan.

To obtain the final schedule the results given by either of the processes employed must be eut down to three phaces of decimals. As 5 has to be carriel from the cast of the last column of figures in the

[^0]principal repayments in order to make the total 1,000 , five of the figures in the third place of decimals must be put up 1 . These will obviously be the first, fifth, sixth, ninth and tenth. Hence the finally adjusted figures will stand as follows:

$\begin{aligned} & \text { Half-year } \\ & \text { No. } \end{aligned}$	Ontstanding Pribeinal at begiming of Half-yuar	Interest for Half-year	Principal contaisel in Payment for Ilalf-year
1	$1000 \cdot 000$	$20 \cdot 000$	$91 \cdot 327$
2	90s.673	18.174	93-153
3	815500	$16 \cdot 311$	95.016
4	720504	14.411	96916
5	6-3:588	12.472	98.85%
6	524:783	$10 \cdot 495$	100.8532
7	423:901	8.479	102.848
8	321.053	6.422	104.905
9	216.148	$4 \cdot 3: 3$	107.004
10	$109 \cdot 144$	$2 \cdot 183$	$109 \cdot 144$
	$5663 \cdots 64$	$113 \% 50$	$1000 \cdot 000$

In the ease of a schedule constructed by method ii (b) or ii (c) some check upon the accuracy of the outstanding prineipal and the interest is necessary. This may be obtained either by method (i), or by addition, since the sum of the outstanding principal column $=\frac{\mathrm{K}}{a_{\overline{2 n}}} \cdot \frac{2 n-a_{\overline{I n}}}{\frac{1}{2} j}$ and that of the interest column $=\mathrm{K}\left(\frac{2 n}{a_{2 \overline{2 n}}}-1\right)$.

It will be found, in some cases, when the schedule is complete, that the interest is occasionally slightly in excess or defect of the correct amount. This is an unavoidable result of the half-yearly payment being taken to a limited number of places.

If the original figures be expressed (as will usually be the case) in pounds, shillings and pence, correct to the nearest penny, similar principles of adjustment will apply.

In the case of an annuity bought as an invertment (as distinct from one created merely as a means of repaying a loan) the whole periodical payment would usually be subject to tax, and the division of the successive payments into interest and capital must be based on the net payment. Thus, if a 5 -year anmuity of $£ 117.3 s$. Sd. half-yearly were bought at $£ 1,000$ to pay 2 per-eent net half-yearly, tax being at $1 s$, the schedule would be as above. If the tax were altered during the curreney
of the amuity, the difference in the net payment would have to be added to or taken from the interest-unless a new schedule were constructed.
9. In the analysis of Article 3 it has been assumed that the balance of each annuity-payment after deduction of interest will be applied directly to reduce the amount of the debt. The purchaser of the annuity may, however, prefer to deal with the payments of the ammity in a different way. Instead of periodically writing down the principal as cach payment is made, he may leave it at its original amount until the end of the term and carry to a separate capitalredemption account so much of the periodical amnuity-payment as is not required for interest; the sums thus carried to a separate account, being arailable for investment, will of course accumulate at compound intercst. Under this mode of dealing with the transaction a uniform amount out of each annuity-payment will be required for interest (since the original 1 rincipal is treated, for purposes of account, as outstanding throughout), and consequently a uniform amount will remain to be carried to capital redemption account at the end of each interval and accumulated at compound irterest. This uniform sum periodically transferred to the redemption account is called a sinking-fund.

In the case of a loan of $a_{n}^{(p)}$ repayable, with interest at rate i, by an annuity of 1 per annum payable p times a year for n years, each payment of the annuity will provide $\left\{(1+i)^{\frac{1}{p}}-1\right\} a_{n}^{(p)}$ for interest and $\frac{1}{p}-\left\{(1+i)^{\frac{1}{p}}-1\right\} a_{n \mid}^{(p)}$ for sinking-fund. Now

$$
\frac{1}{p}-\left\{(1+i)^{\left.\frac{1}{p}-1\right\} a_{n \mid}^{\left(\frac{p)}{n}\right.}=\frac{v^{n}}{p}=\frac{a_{n}^{(p)}}{p s_{n \mid}^{(p)}}, ., ~ ., ~}\right.
$$

Hence, the sinking fund, if accumulated at rate i, will amount at the end of n years to $\frac{a_{n \mid}^{(p)}}{s_{n j}^{(p)}} \times s_{n \mid}^{(p)}$, that is, to $a_{n}^{(p)}$, which will exactly repay the principal of the loan. Further, the accumulations of the sinkingfund at any intermediate period, say after m years, will amount to $\frac{a_{n \mid}^{(p)}}{(m)} \cdot s_{m}^{(p)}$, and the deduction of this sum from the original principal s_{n}
would leave $a_{n_{i}}^{(p)}\left(1-\frac{s_{m \mid}^{(p)}}{s_{n \mid}^{(p)}}\right)$, which may easily be shown to be equal to $a_{n-n-n)}^{(p)}$. It appears, therefore, that, as should obviously be the case, the
balance of the original principal after deluction of the sinking-fund accumulations is the same as the principal outstanding as obtamed by the method of Article 3. In fact, the two methods of dealing with the annuity-payments differ only in form ; in the one case the sinkingfund is earried to a scparate account and accumulated at compound interest, while in the other it is investel in reducing the amount of principal.
10. In the foregoing article the amount of the loan has been taken as $a_{n \mid}^{(p)}$ and the annuity as 1 per annum payable p times a year. If the amount of the loan be taken as unity, the annual ammity-payment required to repay the principal in n years will be $\frac{1}{a_{i n}}$, the amnual interest will be i, and the sinking-fund will be $\frac{1}{a_{n]}}-i$, that is $\frac{v^{n}}{a_{n i}}$ or $\frac{1}{s_{i n}}$. 'The algebraical identity

$$
\begin{equation*}
\frac{1}{a_{\bar{n} \mid}}=i+\frac{1}{s_{\bar{n}}} \tag{7}
\end{equation*}
$$

shows, therefore, the relation between the annuity which 1 will purchase and the annual payment whieh will aecumulate to 1 in n years, and expresses the fact that the annuity-payment must provide (a) interest on the amount invested and (b) the necessary sinking-fund to replace the invested capital on the expiration of the amnuity.

In the case of a loan of K repayable in n years, with interest at rate j convertible half-yearly, by an annuity payable half-yearly the constituent elements of the half-yearly annuity-payment will be given by the formula

$$
\frac{\mathrm{K}}{a_{\overline{2 n}}^{\overline{2}}}=\frac{\mathrm{K} \cdot j}{2}+\frac{\mathrm{K}}{\sqrt[s i n!]{2 n}}
$$

where $a_{\overline{2 n} \mid}$ and $s_{2 \overline{2 n}}$ are taken at the effective rate $\frac{j}{2}$.
11. It will be observed that in Article 9 it has been assumed that the sinking fund will be accumulated at rate i, that is, at the rate realized on the invested capital. In the ordinary formula for the present value of the annuity no question arises as to how that part of eaeh payment representing a repayment of the invested prineipal is re-invested, because it is implieitly assumed that the prineipal repayments go to reduce the outstanding principal-in accordance with the amalysis of Article 3-and rease forthwith to bear interest in
comection with this particular transaction ; in fact, from the investment point of view the transaction is one under which the investor has a gradually diminishing amount of capital invested. In the analysis of Article 9, on the other hand, it has been assumed that the investor is to obtain interest at rate i, not merely on so much of the debt as may remain owing from time to time, but on the whole of the original principal throughout the entire term of the annuity, and this assumption involves the accumulation of the sinking fund at that rate. Obviously, if the sinking fund were not invested at so high a rate, and the investor were in the meantime to take interest at the full rate i on his original principal, the sinking fund accumulations at the end of the term of the annuity would be insufficient to replace the invested capital. The question therefore arises, what price should be paid for an n-year amnuity of 1 per annum in orler that the purchaser may realize interest on the whole of the purehase-money for the entire term of the annuity at rate i^{\prime}, and replace his invested capital by means of a sinking fund to be accumulated at some other-usually lower-rate i ? Formula (7) at onee suggests the answer. If the invested capital be taken as unity, a year's interest will be i^{\prime} and the annual sinking fund must be $\frac{1}{s_{\bar{n}}}$, where $s_{\bar{n}]}$ is calculated at rate i. Hence, if the present value of the annuity under the specified conditions be denoted by $a^{\left(i^{\prime} \& i\right)}$,

That is to say, the annuity per annum which 1 will purchase on this special basis=the annuity per annum which 1 will purchase on the ordinary basis at rate $i+$ the extra annual interest to be realized by the purchaser on the investment.

The corresponding relation for an annuity payable p times a year will take different forms according as the interest included in each periodical payment is assumed to be (a) interest for $\frac{1}{p}$ th of a year at the effective rate i^{\prime}, or (b) sueh that the total interest reeeived in each year would, if aceumulated to the end of the year at rate i, provide a year's interest at rate i^{\prime}. In the first ease

$$
\begin{align*}
\frac{1}{a_{n}^{(p)\left(i \delta^{2}\right)}} & =p\left\{\left(1+i^{\prime}\right)^{\frac{1}{p}}-1\right\}+\frac{1}{s_{n}^{(p)}} \\
& =\frac{1}{a_{n 1}^{(p)}}+p\left\{\left(1+i^{\prime}\right)^{p}-(1+i)^{\frac{1}{p}}\right\} \tag{9}
\end{align*}
$$

and, in the second case,

$$
\begin{align*}
\frac{1}{a_{n \mid}^{(p)\left(s^{\prime}, i\right)}} & =\frac{i^{\prime}}{s_{1 \mid}^{(p)}}+\frac{1}{s_{n \mid}^{(p)}} \\
& =\frac{1+i^{\prime} s_{n}}{s_{n i}^{(p)}} \tag{9}
\end{align*}
$$

From formulas $(S),(9) a$ and $(9) b$ it follows that

$$
\begin{equation*}
u_{n_{i}}^{\left(i^{\prime} \& i\right)}=\frac{s_{n}}{1+i^{\prime} s_{n}^{\prime}}=\frac{a_{\bar{n}}}{1+\left(i^{\prime}-i\right) a_{i!}} \tag{10}
\end{equation*}
$$

:and $\quad a_{n \mid}^{\left.(p) \mid i^{\prime} \& i\right)}=\frac{s_{n=}^{(p)}}{1+j^{\prime}(p) s_{n \mid}^{(p)}}$ on assumption (a) (11) a
or

$$
\frac{s_{n}^{(p)}}{1+i^{\prime} s i n} \text { on assumption (b) (11) b }
$$

When two rates of interest are employed, as in the foregoing iuvestigation, they arr usually distinguished as the remunerative and reproductive rates respectively- i^{\prime} in the ease considered above, being the remunerative rate and i the reproductive rate.
12. It has been slown that the periodical payment of an annuity calculated on the assumption that the reproductive rate differs from the remunerative rate is equal, for a given invested capital, to the periodical payment of an annuity calculated in the ordinary way on the basis of the former rate together with interest on the invested capital at a rate equal to the excess of the remunerative rate over the reproductive rate. Hence it follows that the analysis of the annuity based on a remunerative rate i^{\prime} and a reproductive rate i is the same as that of an ordinary annuity based on the single rate i, except that the interest portion of each payment will include interest at rate $\left(i^{\prime}-i\right)$ on the whole of the original prineipal as well as interest at rate i on the outstanding principal, or, what is the same thing, interest at rate $\left(i^{\prime}-i\right)$ on the principal repaid as well as interest at rate i^{\prime} on the outstanding principal.

Thus, in the practical case of a loan of K repayable by an annnity payable half-yearly for n years, the remunerative rate being j^{\prime} convertible half-yearly and the reproductive rate j convertible half-yearly, the half-yearly annuity payment will be $\frac{K}{a_{2 n}}+\frac{K}{2}\left(j^{\prime}-j\right)$, the prineipal and
interest contained in the m th half-yearly payment will be $\frac{K v^{2 n-m+1}}{a_{\overline{2 n}}}$ and $\frac{K}{a_{2 n}}\left(1-v^{2 n-m+1}\right)+\frac{K}{\ddot{2}}(j-j)$ respectively, the principal outstanding just after the m th payment will be $\frac{\kappa \sqrt{2} \overline{2_{n-m}}}{a-n}$, and the principal repaid will be $\frac{\mathrm{K}\left(a_{2 n}-a \cdot \overline{2 n-i n}\right)}{(a \cdot \overline{2 n}}$; all the present values in these expressions being calculated at the effective rate $\frac{j}{2}$. On comparison of these expressions with those given in Art. 7 it will be found that the ouly differences are in the amount of the annuity-payment and the periodical interest. The effect of the lender realizing the higher remunerative rate j^{\prime}, instead of the lower rate j at which the sinking fund can be accumulated, is that the balf-yearly anmuity-payment and the interest contained in each instalment are increased by $\frac{K}{2}\left(j^{\prime}-j\right)$, as compared with what they would be if the annuity were calculated in the ordinary way at j convertible half-yearly.

$$
\text { Since } \begin{aligned}
& \frac{\mathrm{K}}{a_{\overline{2 n}}}\left(1-v^{2 n-m+1}\right)+\frac{\mathrm{K}}{2}\left(j^{\prime}-j\right)=\frac{j}{2} \cdot \frac{\mathrm{~K}}{a_{\overline{2 n}}} \cdot a_{\overline{2 n-m+1}}+\frac{\mathrm{K}}{2}\left(j^{\prime}-j\right) \\
&=\frac{j^{\prime}}{2} \cdot \frac{\mathrm{~K}}{a_{\overline{2 n}}} \cdot a_{\overline{2 n-m+1}}+\frac{1}{2}\left(j^{\prime}-j\right) \frac{\mathrm{K}\left(a_{\overline{2 n}}-a_{\overline{2 n-m+1}}\right)}{a_{\overline{2 n}]}^{\overline{2}}}
\end{aligned}
$$

it will be seen that, as has already been stated, the interest for each interval is equal to the interest at the remunerative rate on the outstanding principal together with interest at a rate equal to the excess of the remunerative over the reproductive rate on the principal repaid.
13. In constructing a sehedule showing the interest and principal contained in the successive payments of an annuity calculated to pay she rate of interest on a loan and to admit of the replacement of capital at another, it will merely be necessary to construct a preliminary schedule in the ordinary way at the latter rate and to increase the amounts in the interest column by the extra interest on the whole loan. suppose, for example, that in the ease considered in Art. 8 the amuity had been calculated to yield the lender 5 per-cent convertible half-yearly or the entire loan for the whole duration of the transaction and to admit of the replacement of principal at 4 per-cent convertible
half-yearly. The half-yearly annuity-payment would then have been $111 \cdot 32653 \ldots+005 \times 1000$, which $=116 \cdot 39653 \ldots$, and the final sehedule would have stood as follows-

$\begin{aligned} & \text { Half-year } \\ & \text { No. } \end{aligned}$	Outstanding Principal at beginning of Half-year	Interest for Half-year	$\begin{aligned} & \text { Prineipal } \\ & \text { contained in } \\ & \text { Paviuent for } \\ & \text { Half.year } \end{aligned}$
1	1000	25	91-327
2	$905 \cdot 673$	23.174	93-153
3	815.520	$21 \cdot 311$	95.016
4	720-50\%	$19 \cdot 4.11$	96916
5	623.588	$17 \cdot 472$	98.855
($524 \cdot 733$	$15 \cdot 4.95$	$100 \cdot 832$
7	423.901	13.479	102 S 88
8	321.053	$11 \cdot 422$	104:905
9	216.148	$9 \cdot 323$	107.004
10	109.144	7-183	109.14t

It will be observed that the interest for each half year-although most simply obtained by adding 5 to the interest given in the schedule of Art. S-may also be considered as made up of $2 \frac{1}{2}$ per-eent on the outstanding principal and $\frac{1}{2}$ per-cent on the prineipal repaid. Thus, for the 9 th half year, $9.323=025 \times 216.148+\cdot 005 \times 783.852$.
14. It will be understood that the expressions "principal repaid" and "principal outstanding" are employed, in connection with an annuity based on differing remuncrative and reproductive rates, in a purcly technical sense, and that they do not recessarily or usual' y define any practical relations between the parties to the transaction. They are merely introduced for purposes of analysis to show how mueh of each payment is of the nature of interest and consequently subject to income-tax. Different remunerative and reproductive rates may oceasionally arise in practice, as, for example, when a purchaser has bought an annuity to pay a high rate of interest and prefers to treat it for purposes of account as yielding a somewhat lower rate for the entire term on the whole invested capital and admitting of the replacement of capital at a still lower rate, but they very seldom form any part of the contraet between a borrower and a lender. In the practical example discussed in the last article it is obvious that if the transaction were a loan, subject to the ordinary right of redemption, the borrower would pay off the outstanding balance long before the expiration of the term of the annuity ; 4 per-cent convertible half-yearly being by
hypothesis the rate at which re-investments can be made, and, therefore, the rate at which money could be borrowed on reasonable security, it would not suit the borrower to pay the high and increasing rates (as compared with the principal nominally outstanding) exhibited in the latter part of the schedule. A tramsaction involving different remuncrative and reproductive rates must, in fact, be regarded as of the nature of a sale and purchase, rather than a loan. If, therefore, in the case of an annuity based on two rates of interest cither party desires, or both desire, to terminate the contract, the tarms of re-purchaseapart from any special provision in the security-will generally be a matter for negotiation. Either party is entitled to the complete fulfilment of the contract, and the amount to be paid by the original grantor of the ammity for the re-purchase of the remaining instalments will have to be settled by agreement.

Three formulas suggest themselves as affording reasonable bases for negotiation. To fix ideas, consider the case of an ammity of 1 per annum payable amually for n years and originally bought at the price of $a_{n}^{\left(i^{\prime} \otimes_{i j}\right)}$, or $\frac{1}{\frac{1}{s_{n}^{\bar{n}}}+i^{\prime}}$, to pay i^{\prime} on the purchase-money for the entire term of n years, and to admit of the replacement of capital by a sinking fund accumulated at rate i, and suppose that the amuity is to be redeemed just after the t th payment. Then:
(i) If the vendor desires to re-purchase, it appears reasomable that he should put the purchaser in a position to buy a similar amuity for the remaining ($n-t$) years in the open market. The rate at which re-investments can be made being, by hypothesis, i, it may be assumed that this is the rate at which an annuity could be bought on the ordinary basis. Hence in this case the re-purchase price would be $a_{\overline{n-t}}$ calculated in the ordinary way at rate i.
(ii) If the purchaser desires to obtain the immediate use of his invested capital it may be considered that he ought to give the vendor credit for the entire accumulations of the sinking fund-that is, for the principal technically assumed to be repaid-and to aceept the balance of his invested capital in commutation of the remaining payments of the annuity. On this basis the re-purchasc-price would be
(iii) If both parties desire to close the transaction it may be argued that the purchaser should sell back the remainder of the annuity on the basis on which he originally bought it, that is, at a price to yield rate i^{\prime} and to admit of the replacement of the principal at rate i. In these circumstances the re-purchase-price would be

$$
a_{\frac{\left(i^{\prime} \& i\right)}{n-i)}} \text { or } \frac{1}{\frac{1}{s_{n-t \mid}}+i^{\prime}}
$$

Let the amounts to be paid on re-purchase on these three bases he respectively denoted by l_{1}, l_{2} and l_{3}.

Then

$$
\begin{aligned}
& R_{1}=a_{n-t \mid}=a_{n-t}\left(\frac{1}{s_{n}}+i^{\prime}\right) a \frac{\left(i^{\prime} \& i\right)}{n} \\
& \mathrm{R}_{2}=\left(1-\frac{s_{\bar{i}}^{-i}}{s_{n}}\right)\left(a_{n!}^{\left(i^{2} \& i\right)}=\frac{a_{n-i}}{a_{n!}} \cdot\left(a_{n}^{\left(i^{2}\right.} \& i\right)\right. \\
& =a_{\overline{n-t}}\left(\frac{1}{s_{n}}+i\right) a_{\frac{\left(i i^{n}\right.}{}}=\mathrm{R}_{1}-\left(i^{\prime}-i\right) n_{\bar{n}-i)} a_{\frac{i i^{\prime}}{(i)}} \\
& \mathrm{R}_{3}=a_{\overline{n-t \mid}}^{\left(i^{\prime} z_{i}\right)}=\frac{1}{\overline{s_{n-t}}+i^{\prime}}=\frac{1}{\overline{a_{n-t}}}+i^{\prime}-i \\
& =\frac{a_{\overline{n-t}}}{1+\left(i^{\prime}-i\right) a_{\overline{n-t}}}=\frac{\mathrm{R}_{1}}{1+\left(\iota^{\prime}-\imath\right) a_{\overline{n-t}}} \\
& \mathrm{R}_{1}=\mathrm{R}_{2}+\left(i^{\prime}-i\right) a_{\overline{n-t}} \cdot a \frac{\left(i^{\prime} \& i\right)}{n i} \\
& =R_{3}+\left(i^{\prime}-i\right) a_{\overline{n-t \mid}} \cdot R_{3}
\end{aligned}
$$

Hence

These relations bring out elearly the differences between the three methods of calculating the repurchase price. In the first case the purchaser receive, the full present value of the remaining instalments of the annuity. In the second case he gives up the extra interest which he would have obtained during the remaining $(n-t)$ years on the whole of
his original capital if he had retained the annuity, the present value of this extra interest being $a_{n-t \mid} \times\left(i^{\prime}-i\right) a_{n}^{\left(i^{\prime} \& i\right)}$. In the third case he gives up the extra interest which he would have obtained during the remaining $(n-t)$ years on the sum actually paid to him by the vendor for the re-purchase of the remainder of the amuity, the present value of this extra interest being $a_{\overline{n-t \mid}} \times\left(i^{\prime}-i\right) \cdot a \cdot \frac{\left.i^{\prime} \&^{n}, i\right)}{n-t \mid}$. Obviously, R_{1} gives the largest and R_{2} the smallest re-purehase price, the result giren by R_{3} being intermediate in amount. In practice the price obtainable on re-purehase of such an annuity as that under consideration may be expected to be determined almost entirely by the market rate of interest obtainable on similar security, that is-on the assumption that the reproductive rate coincides elosely with the market rate-to approximate to R_{1} rather than R_{2} or R_{3}, for the purchaser, if desirous of realizing, will generally be able to find some third party who will be willing to take over the investment in the event of the original vendor not wishing to re-purehase. Hence the formulas R_{2} and R_{3} must be considered as chiefly of theoretical interest.
15. So far, the investigation of the present chapter has been confined to the case of an ordinary immediate annuity, but it is obvious that similar methods of analysis may be applied to any definite and certain series of payments. Any such series of payments may be regarded as the equivalent-at the rate of interest employed in the calculations-of its present value, and the successive payments may be divided into their component elements of principal and interest. The general principle to be observed is that so much of each payment as is not required for interest will be applicable to the reduction of the outstanding prineipal.
16. In order to find the present value of a series of payments, other than an ordinary immediate annuity, to pay interest at one rate on the whole invested capital until the final payment of the series has been made, and to admit of the replacement of the capital by a sinking-fund aecumulated at another rate, it will, in general, be neecssary to proceed by a different method from that of Art. 11. Let the successive annual prayments be $u_{1}, u_{2}, u_{3} \ldots u_{n}$ - the entire series extending over n years. Let the remunerative and reproductive rates be i^{\prime} and i respectively, and let the present value of the series of payments on the special basis be $a^{i{ }^{i} \& i}$; further, let it be assumed that none of the quantities $u_{1} \ldots u_{n}$ is less than $i^{\prime} a^{i^{\prime} \& i}$. Then, since the balances of the successive payment, after deduction of interest on the invested capital are to ke invested and accumulated at rate i to replace the capital at the end of n years,

$$
\begin{align*}
& \left(u_{1}-i^{\prime} u^{i^{\prime} \& i}\right)(1+i)^{n-1}+\left(u_{2}-i^{\prime} n^{i \& i}\right)(1+i)^{n-2}+\ldots=a^{i^{\prime} \& i} \\
& \quad u^{i \prime \varepsilon_{1}}=\frac{u_{1}(1+i)^{n-1}+\ldots+u_{n}}{1+i^{\prime} s_{n}}=\frac{r_{1}+\ldots+r_{1}+u_{n}}{1+\left(i^{\prime}-i\right) r_{n}} \tag{12}
\end{align*}
$$

That is to say, the present value of the series of payments on the special basis under discussion is equal to their amount at rate i divided by $1+i^{\prime} s_{n}$, or their present calue at rate i divided by $1+\left(i^{\prime}-i\right) a_{n}$.

From this general result it follows at once that

$$
\mu_{\bar{n}}^{\left(i^{\prime} x^{i}\right)}=\frac{s_{n}}{1+i^{\prime} s_{\bar{n}}}=\frac{a_{\bar{n}}}{1+\left(i^{\prime}-i\right) \mu_{\bar{n}}}
$$

as in Formula (10).
It will be observed that the validity of Formula (12) depends on none of the payments being less than $i^{\prime} a^{i^{i}} \boldsymbol{x}^{i}$. For, if any one of the payments- u_{r}, say-is less than $i^{\prime \prime} a^{i k i}$, then the methol by which Formula (12) is obtained would implicitly involve either that the balance of the year's interest could be borroucel for the remainder of the term at the reproductive rate i, or that it could be withdrawn from existing sinking-fund accumulations, and neither of these assumptions is justified by the fundamental condition that the sinking-fund can be invested and accumulated at rate i. ln fact, the condition is a practical one, and cannot be supposed to apply to a negative sinking-fund.

In any given case, therefore, if it be found that any of the series of payments would be insufficient to provide interest on the value as given by Formula (12), the result must be rejected as incorrect for practical purposes, and the value must be sought by other methods-in general by trial and error. In some cases it will be obvious at the outset that the method under discussion will not be applicable. Suppose, for example, that it is required to find the value of a deferred annuity to pay rate i^{\prime} on the capital invested, and to admit of the replacement of the capital ly a sinking-fund invested at rate i. Here no sinking-fund can be formed until the anmity begins. During the period of deferment the investor will have to capitalize the interest, and since he requires interest at the remunerative rate on his whole invested capital this capitalized interest must be accumulated at rate i^{\prime}. Hence the required raluc- $\|_{i n}^{i_{n i}^{\prime 2}=i}$ saywill be given by

CHAP'TER V.

On tife Valuation of Debentures and otier SecuritiesMiscellaneots Problems.

1. It is proposed in this chapter to consider the application of the Theory of Compound Interest to some representative examples of that class of problems in which it is required to find the present value of a given obligation or combination of obligations, or the terms of a given transaction, in order that a speeified rate of interest may be realized. It does not come within the seope of this work to consider the nature of the security for the due fulfilment of the conditions of the contract in any particular case, or the legal incidents affecting any such contract, or the rate of interest which may properly be employed in valuation. It will be assumed in all eases that the payments provided for under any given contract will be certainly made at the stipulated dates, and it will be understood that the rate of interest that may be used in any example is employed merely for purposes of numerical illustration without reference to its applicability to the particular security in question.
2. The most important problems of the class under consideration are those that arise in comnection with the valuation of redemable securities-that is to say, securities under which there is an obligation or an option (exercisable by the debtor) to pay a given sum on a given date, and an obligation to pay in the meantime a fixed periodical dividend.
3. Ordinary Stocks and Shares do not lend themselves to exact raluation at a specilice rate of interest owing to the liability of the dividends to fluctuate from year to year, and preference, guaranteed and perpetual debenture stocks-or, in fact, any pre-ordinary stocks carrying
a fixed annual dividend withotit any express provision for repayment of the capital-may obviously be valuei by simple proportion; for example, the present value, to pay 3 per-cent convertible half-yearly, of a 5 per-cent perpetual preference stock on which the dividends are payable half-yearly-the next being due in six months' time-would be $100 \times \frac{2 \frac{1}{2}}{1 \frac{1}{2}}$ or $166 \dot{6}$ per-cent, and the present value of the same stock to pay 3 per-cent effective would be $100 \times \frac{2 \frac{1}{2}(1+\sqrt{1 \cdot 03})}{3}$ or $167 \cdot 9$; if the next dividend fell due in less than six months it would merely be necessary to accumulate the present value as obtained by the method just explained for the period elapsed since the due date of the last dividend.
4. The valuation of redeemable securities presents a more complex problem inasmuch as the arrangements in regard to redemption have to be taken into account. As a preliminary to the investigation of the subject the following general points may be mentioned:
(i) When the price at which a debenture or other security is redeemable differs from its nominal amount, it is the former which must be taken into account in the valuation of the security. Apart from the bearing it may have upon the rights of the holder in the event of a winding-up-a contingency which will be disregarded here-the nominal amount of a debenture, in such a case as that under consideration, is of no importance except as a factor in the determination of the amount of the periodical dividend. Thus, a debenture for 100 bearing interest at 5 per-cent payable half-yearly and redeemable at the end of 15 years at 110 represents, for present purposes, a contract to pay 110 at the end of 15 years and $2 \frac{1}{2}$ half-yearly during that period; the fact that the debenture is nominally for 100 merely assists in fixing the amount of the half-yearly dividend.
(ii) The so-called "rate of interest" on a debenture has no necessary comnection with the true rate of interest employed in valuation, and would be more conveniently termed a "rate of dividend." Like the nomimal amount of the debenture it should be regarded merely as a factor in the determination of the periodical dividend. In the case of a debenture bearing interest at, say, is per-cent payable half-
searly, it would be incorrect to regard this rate as a nominal rate, and to treat it as equivalent to an effective rate of $(1 \cdot 0.5)^{2}-1$, unless the true rate of interest employed in valuation were also \bar{j} per-eent convertible half-yearly. In general, the equivalont ammal dividend per-cent in such a case would be $-\frac{1}{2} \times\left\{(1+i)^{\frac{2}{2}}+1\right\}$ where i is the true rate of interest employed in valuation. Thas in the example of Art. 3 the equivalent ammal dividend has heen taken as $21(1+\sqrt{2} \cdot(0: 3)$, not as $5 \cdot 06 \cdot 5$.
(iii) When a debenture is only redeemable at the option of the debtor, it will be necessary in valuing the debenture at an effective rate of interest less than the ratio of the equivalent anmual dividend to the price at which the debenture would be redeemable to assume that the option to redeem will be exereised, and in valuing it at an effective rate exceedingr that ratio to assume that the option will not be exereised. 'Ihe reason for this will be best seen by consideration of an actual example. Take, for instance, the ease of a debenture bearing interest at 5 per-cent payable amually and redeemablo at the option of the issuing company at 125 , so that the ratio of the annual dividend to the redemption price is 4. per-cent. The issuing company is, in this ease, practically in the position of owing a sum of 105 -repayable or not at its option-mpon which it pays interest at the rate of 4. per-cent. If, now, the eredit of the company or the nature of the security is such that the debenture would be valued by an investor at a lower rate than 4 per-cent, it is probable that the company could re-borrow at a rate of less than 4 per-cent, while, if the converse were the fact, it is probable that the company would have to otler a higher rate of interest than 1 per-cent if it sought to raise money to repay its existing delnentures. Hence, in the lirst case, it may be assumed that the option would certainly lee exereised; and in the second ease, that it would not be exmeremb.
5. To proceed מow to the problem of valuation. It will ber convenient to begin with the case of a debenture or other security under which the principal is redecmable in one sum.

Sont C_{1} represent the price to be paid on redemption.
. $n_{1} \quad, \quad$ the number of years at the expiration of which the sceurity becomes redecmable.
,. K_{1}., the present value of C_{1} due n_{1} years hence at the rate of interest employed in the valuation of the socurity.
.. I .. the ratio of the dividend per anmum to C_{1}.
.. I_{1},. the present value of the secority, including hrokerage or commission and any other costs incidental to purehase.

Then, if the security be definitely redeemable at the expration of n_{1} years, and the dividend be payable p times a year-the next dividend being due $\frac{1}{p}$ th of a year hence-the purchaser will be entitled to a sum of C_{1} payable at the enel of n_{1} rears, and a periodical dividend of $\frac{q \mathrm{C}_{1}}{p}$ payble at the end of every $\frac{1}{\rho}$ th of a yalr throughout the period of n_{1} years, or, in other words, an ammity of $g C_{1}$ payable p times a year for n_{1} years. Hence the value of the security to pay the effective rate i will be given by the fommat

$$
\begin{align*}
& A_{1}=a_{1} c^{n}+q_{1}^{\left(y_{1} \cdot\left(u_{n_{1}}^{2 n}\right)\right.} \cdot \cdots \cdot \cdot \cdot \cdot \cdot \cdot(1) \tag{1}\\
& a_{n_{1} \mid}^{(n)}=\frac{1-f^{n_{1}}}{j_{p)}} \\
& A_{1}=C_{1} c^{n_{1}}+g C_{1} \cdot \frac{I-c^{n_{1}}}{j} \\
& =\mathrm{C}_{1} 2^{n_{2}}+\frac{\| \prime}{j_{n 1}}\left(\mathrm{C}_{1}-C_{1} r^{n_{2}}\right) \\
& ==K_{1}+\frac{9}{j_{(2)}}\left(C_{1}-K_{i}\right) \tag{2}
\end{align*}
$$

or, since
where K_{1} represents the present value of the capital repasable.
By substitution of $\left(1+\frac{j}{m}\right)^{m}-1$ for i, it follows that the walue of thereserity to pay the nomanal rate j convertible m times a year wili be wiven by the fommas

$$
\begin{align*}
& \Lambda_{1}=\mathrm{C}_{1}\left(1+\frac{j}{m}\right)^{-m n_{1}}+g \mathrm{C}_{1} \frac{1-\left(1+\frac{j}{m}\right)^{-m n_{1}}}{p\left[\left(1+\frac{j}{m}\right)^{p}-1\right]} \tag{3}\\
& \Lambda_{1}=\mathrm{K}_{1}+\frac{q}{p\left[\left(1+\frac{i}{m}\right)^{\prime \prime}-1\right]}\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right) \quad . \quad . \tag{4}
\end{align*}
$$

where in the latter formula K_{1} is to be calculated at the nominal rate j convertille m times a year.
6. If m be put $=p$, formulas (3) and (4) take the form
or

$$
\begin{equation*}
\mathrm{A}_{1}=\mathrm{C}_{1} v^{p n_{1}}+g \frac{\mathrm{C}_{1}}{p} a_{\bar{p} n_{2}} \cdot \cdots \cdot \cdot . \tag{5}
\end{equation*}
$$

where $v p n_{1}$ and $a \overline{p n_{2} \mid}$ are to be calculated at the effective rate $\frac{j}{p}$, and K_{1} represents the present value, at the nominal rate j convertible p times a year, of C_{1} due n_{1} years hence.

It appears, therefore, that the present value of a sceurity such as that under consideration, at a nominal rate of interest convertible with the same frequency as that with which the dividend is payable, may in all cases be written in the simple form

$$
\mathrm{K}_{1}+\frac{g}{j}\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right)
$$

where j is the given nominal rate of interest and K_{1} is the present value, at that rate, of the capital repayable. This result admits of a simple verbal proof. For if the dividend were at the rate of j per unit per annum, payable p times a year, calculated on \mathbf{C}_{1}, it is obvious that the present value of the entire security to pay the rate of interest j convertible p times a year would be C_{1}, and sinee the present value of C_{2} due n_{1} years hence is, by definition, K_{1}, it follows that the present value of a dividend of $j C_{1}$ per annum payable p times a year, for the term of n_{1} years, would be $\mathrm{C}_{1}-\mathrm{K}_{1}$. By simple proportion, the present value of a dividend of 1 per annum payable p times a year for the term of n_{1} years would be $\frac{\mathrm{C}_{1}-K_{1}}{j \mathrm{C}_{1}}$, and the present value of a dividend of $g \mathrm{C}_{1}$ per annum
payable p times a year for n_{1} years would be $g \mathrm{C}_{1} \times \frac{\mathrm{C}_{1}-\mathrm{K}_{1}}{j \mathrm{C}_{1}}$ or $\frac{g}{j}\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right)$. But the present value of the entire seenrity is the sum of the present value of C_{1} due n_{1} years hence, and the present value of a dividend of $g \mathrm{C}_{1}$ payable p times a year throughout the term of n_{1} years. Hence

$$
\mathrm{A}_{1}=\mathrm{K}_{1}+\frac{g}{j}\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right)
$$

Formula (2) may be established by preeisely similar reasoning, if $j(p)$ be written for j, and if it be remembered that the present value of the security at the effective rate i is the same as its value at the corresponding nominal rate $j_{\langle p\rangle}$.
7. In the special case in which $p=m=1$, when the problem becomes that of tinding the present value, to pay the effective rate i, of a security yielding an amnual dividend of $g \mathrm{C}_{1}$ and redeemable in n_{1} years at the price of C_{1}, the alternative formulas take the form

$$
\begin{equation*}
\mathrm{A}_{1}=\mathrm{C}_{1} v^{n_{2}}+g \mathrm{C}_{1} a_{n_{1}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{A}_{1}=\mathrm{K}_{1}+\frac{g}{i}\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right) \tag{S}
\end{equation*}
$$

8. In practice the periodical dividend (commonly called "interest") is almost invarialoly paid half-y early or quarterly.

If it be paid half-yearly the value of the security to pay the effective rate i will be
or

$$
\begin{align*}
& \mathrm{C}_{1} \tau^{n_{1}}+g \mathrm{C}_{1} a_{\left.n_{1}\right]}^{(2)} \cdot \tag{9}\\
& \mathrm{K}_{1}+\frac{g}{j_{(2)}}\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right) . \tag{10}
\end{align*}
$$

while the value to pay the nominal rate j convertible half-yearly, may be written in the form
or

$$
\begin{equation*}
\mathrm{C}_{1} v^{2 n_{1}}+g \frac{\mathrm{C}_{1}}{2} a_{\overline{2 n_{1} 1}} \tag{11}
\end{equation*}
$$

where $v^{2 n_{1}}$ and $a \overline{2 n_{1}}$ are calculated at the effectice rate $\frac{j}{2}$ and K_{1} is written for $\mathrm{C}_{1} r^{2 n_{1}}$.

Similarly, if the dividend be pad quarterly, the value of the security to pay the effective rate i will be

$$
\begin{align*}
& \dot{C}_{1} 2^{n_{1}}+\eta \mathrm{C}_{1} n_{n}^{(n)} \tag{13}\\
& \mathrm{K}_{1}+\eta_{1}\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right) . \tag{14}
\end{align*}
$$

and the value to pay the mominal rate j convertible quarterly may be written in the form

$$
\begin{align*}
& \mathrm{C}_{1} r^{\prime n_{1}}+g \frac{\mathrm{C}_{1}}{4} \cdot \|_{4} n_{1} \tag{15}\\
& \mathrm{~K}_{1}+g\left(\mathrm{C}_{1}-\mathrm{K}_{1}\right) . \tag{16}
\end{align*}
$$

(ir
where $\tau^{4 n n_{1}}$ and ${ }^{4} 4 n_{3}$ are both to be ealculated at the effectice rate $\frac{j}{4}$, and K_{1} is written for $\mathrm{C}_{1} c^{4 n}$.
9. On comparison of the altermative formulas given in the foregoing articles, it will be observed that in each case the first formula entails the calculation of two quantities, namely, the present value of 1 due n_{1} years hence and the present value of an n_{1}-year annuity; while the second formula involves the calculation of only the single quantity K_{1}. Conseguently, in any case where the rate of interest employed, or the value of n_{1}, is such as to necessitate the actual calculation of $r^{n_{1}}$, it will clearly save labour to use the second formula. But when all the required quantities are tabuated, it will generally be found more convenient to employ the first formula, or, what is the same thing, to dispense with a formula and to write down the value by reference to the aceneral principle that the present value of the entire security is the suai of the present values of the eapital repayable, due at the end of the tem, and of an ammity of the dividend. For example, if it be required to find the present ralue, at 4 per-eent convertible half-yearly, of a dobenture for 100 berring intwest at \bar{J} per-cent payable lalf-yearly and palecmable in 20 years at 10 .) it is simpler to write down the value as

 and using the gencral formmai $K_{1}+?_{j}\left(C_{1}-K_{1}\right)$.
10. When a redeemable security is bought to pay a rate of interest lower than the ratio of the dividend to the redemption price-that is, if j be $<g$ where interest is convertibie with the same frequency as that with which the dividend is payable, or if i be $<g s^{(m)}$ where interest is convertible yearly and the dividend is payable p times a year-it is - lear that the price paid for the sceurity will exceed the redemptionprice; in these cireumstances, the security is said to be bought at a premium. In the notation of Art. 5 , the premium will be $\Lambda_{1}-\mathrm{C}_{1}$. Now, if the rate of interest employed in valuation be j convertible p. times a year, and the dividend be payable with the same frequener,

$$
A_{1}-C_{1}=C_{1} c^{m_{1}}-\mathrm{C}_{1}+\frac{g \mathrm{C}_{1}}{p} a_{2} n_{2}
$$

where $r^{2 n_{1}}$ and $a_{p n_{1}}$ are to be calculated at the effective rate $\frac{j}{p}$,

$$
=\frac{(g-j) \mathrm{C}_{1}}{p} \cdot u_{m^{m_{1}}}
$$

Or, if k be the premimm per mit on the redemption-priec,

$$
\begin{equation*}
l_{i}=\frac{q-i}{p}{ }^{1 /+1} \tag{17}
\end{equation*}
$$

This equation expresses the firet that the premimu per muit is equivalent to an ammity, at the rate employed in valuation, of the excess of the dividend per amum orer the valuation rate of interest. It is obrions that this must be the case, for the present value, to pay j per anmmm convertible p times a year, of each mit of capital repayable, together with a dividend of j per ammm payble p times a year, will dearly he mity, and the extra value-or preminm-due to the dividend beiner at the rate of g, instead of j, per ammm must be the present value of an ammity of the excess of g over j for the term during which the dividend is payable. In general, if a debenture redeemable in n_{1} rears, and bearing interest at the rate of g per unit per ammm on the redemptionprice payable 1 times a year, be bought to pay the effective rate i, the premimm, per mit of the redemption-price, paid by the purehaer, will be given by the formula

$$
l_{i}=\left(g-j_{(p)}\right) n_{n_{1}}^{(p)}=\left(g-j_{p_{1}}\right)_{j_{p 1}}^{i}{ }^{\prime} \overline{n_{1}} \cdot \cdots \text { (l) }
$$

11. In the investigations of Arts. 5 to 10 , the seemity has been assumed to be certainly redeemable on the expiration of the specified
term of years. On this assumption, the resulting formulas hold equally whether the rate of interest employed in valuation is less or greater than the rate of dividend-except that in the latter case the $\%$ of Art. 10 becomes negative, and the security may be said to be bought at a discount on its redemption-price. If, however, the security he only redeemable at the option of the debtor, the distinction explained in Art. 4 (iii) must be borne in mind; for valuation at a rate lower than the ratio of the dividend to the redemption-price, all the formulas (1) to (18) will hold good, but in valuing the security at a rate eaceeding that ratio it must be assumed that the option to redeen will not be exercised, in which case the value of the sccurity will be merely that of a perpetuity of the dividend, namely, $\frac{g C_{1}}{j_{(p)}}$ or $\frac{g C_{1}}{j}$ according as an effective rate or a nominal rate convertible p times a year is employed.
12. It will be convenient, at this point, to consider some actual examples of the valuation of securities of the class under consideration, which includes the various British, Indian, and Colonial Government Securities, many British, Colonial, and Foreign Municipal Stocks, the majority of American Railway Mortgage Bonds, and numerous Brewery, Commercial and other Debentures.
13. Take, first, the case of Consols. In this case, dividends are payable quarterly, at the rate of $2 \frac{1}{2}$ per-cent per amum, on every 5 January, April, July and October, and the Stock is redeemable at par on or after 5 April 1923 at the option of the Government. Hence the value to pay any rate of interest exceeding $2 \frac{1}{2}$ per-cent convertible quarterly will be that of a perpetuity of $2 \frac{1}{2}$ per-cent per annum payable quarterly. For example, the value per-cent as at 5 April 1915 to pay $3 \frac{1}{4}$ per-cent convertible quarterly would be $\frac{2 \frac{1}{2}}{3 \frac{1}{4}} \times 100$. If, however, the value were required to pay less than $2 \frac{1}{2}$ per-cent convertible quarterly, it would be necessary to assume that the option to redeem will certainly be exercised. Thus, to pay $2 \frac{1}{2}$ per cent effectire, the value per-cent at 5 April 1915 would be, by Formula (2) and Table V1I

$$
100 v^{8}+1 \cdot 00933\left(100-100 \imath^{8}\right)
$$

where \imath^{8} is to be calculated at 2! per-cent effective. Again, to par $2 \frac{1}{4}$ per-cent convertible quarterly the value at the same date would be, by Formula (17),

$$
100\left(1+\frac{0025}{4}-\omega_{\overline{\mathrm{ziz}}}\right)
$$

where the ammity-value is to be calculated at $\frac{0}{18}$ per-eent effeetive.
The value at any one of the cuarterly dividend-dates to pay $2 \frac{1}{2}$ percent convertible quarterly-that is, the same rate as the rate of dividend-would of course be par.

The numerieal values corresponding to the various rates specified above are shown in the following table, and it will be noticed that the assumption of a lower rate than the rate of dividend makes very little difference in the value-owing to the shortness of the term before the redemption-option becomes exercisable.

Value of 100 Consols at 5 April 1915 to pay the under-mentioned rates.

32 $\frac{1}{4}$ per-cent convertible quarterl	$\underset{\substack{2 \pm \\ \text { prer-eent } \\ \text { convertible quat terly }}}{ }$	${ }^{2 \frac{1}{2} \text { per-cent }}$ effective	$2 \frac{1}{4}$ per-cent couvertible quarterly
76:923	100-000	$100 \cdot 167$	101.826

14. Consider next the following British Govermment Seeurities:

Loeal Loans 3 per-cent Stock redeemable at par at one month's notice
Transvaal 3 per-cent Guaranteed Stock redeemable at par ou 1 May 1953 (or on or after 1 May 1923)
interest being payable quarterly on 5 Jaumary, April, July and October in the case of the former, and half-y early on 1 May and November in the ease of the latter.

The values per-cent of these Stocks to pay $3 \frac{1}{2}$ per-cent convertible half-yearly, on 5 April 1915 and 1 May 1915 respectively, will be as follows:

```
Lucal Loans 3 per cent ...
    which \(=86.085\).
Transvaal 3 per-cent ... ... \(100-\frac{1}{4} a_{\overline{66}}\) at \(1 \frac{3}{4}\) per-cent
    which \(=89 \cdot 536\).
```

The two mest important Indian Goverment Loans-the 31 per-cents and the 3 per-cents-are both redeemable on or after specified dates at the option of the Govermment, so that for valuation at any rate exeecediner $3 \frac{1}{2}$ per-cent convertible quarterly (the interest in cach case being payable
quarterly on 5 January, April, July and October) they must be regarded as perpetuities. For example, their values at any quarterly dividenddate to rield 33_{4}^{3} per-cent convertible half-yearly would be $\frac{575(\sqrt{1 \cdot 01575}+1)}{.01575}$ and $\frac{.75(\sqrt{1.01575}+1)}{.01575}$, or 933.769) and 50.373. It
-hould. however, be borne in mind, ats a practical consideration in such a case as this, that in the event of a genemal rise in prices the 3 per-cent stock would admit of a considerably greater appreciation before it would pay the borrower to exercise the option of redemption, and ennsegnently it might be expected to stand at a relatively higher price. This will be clear from the simpler ease of a 1 per-cent stock and a 3 per-cent stock both redeemable at par without notice. The value of the former. to yicld 4 per-cent, will be 100 . That of the latter will be strictly the value of a stock redecmabie in n years (where n is unknown), and for any finite value of n this exceeds 75 .
15. British Municipal Stocks are usually definitely redeemable at par at fixed dates, in which case the method of valuation will be precisely similar to that already exemplified. There are, however, numerous exceptions to this rule. The Stocks of some Corporations are redeemable onls by purchase in the open market. Such Stocks will, of course, be broperly valued as perpetuities of the amual dividend. Others are redeemable at par not later than certain fixed dates, but may be redeemed at par on or after certain earlier dates at the option of the borrowers. In any such cate it shonld be assumed that the option to redeem will be exercised at the earlier or later date according as the rate of interest 4mployed in valuation is less than or greater than the rate of dividend. The Sheffield Water l'rogressive Amnuities present an example of at comewhat unusual type. On the acquisition of the water modertaking by the Corporation the ordinary shareholders were offered for each $£ 100$ stock ((1) 5 LSO 2 in cash, or (b) an amuity of 23 per ammm payable half-y carly, or (c) an amuity of \mathscr{L}^{2} for the first two years, $\mathfrak{f l}$. 5 . for the second two years. \mathscr{L}^{2}. 10 s. for the third two years. de., M, to \mathscr{E} f for wery year after the first $l(b$, both the (b) and (c) annuities being redeemalle on or after the expration of 60 years at 25 years' purchase.

What were the present values, at the outset, of the (b) and (c) ammitirs, inturest beine assmed at 4 per-cent convertible half-yenty :

Since a perpetuity of 1 per amm payable hall-yearly is worth, at

4 per-cent convertible half-yearly, $2 \overline{5}$ years' purchase, it follows that fir the purposes of a valuation at 4 per-cent convertible half-yearly the option of redemption may be disregardeci. Hence the present value of the (b) amuity would have been $1 \frac{1}{2} \omega_{\infty}^{20 \cdot 0}=\frac{1 \frac{1}{2}}{(0,2}=75$.

Similarly, the present value of the (c) annuity would have been

$$
a_{\infty}-125\left(a_{\overline{32}}+a_{28}+\ldots+a_{4}\right)
$$

where all the annuity-values are to be caleulated at \because per-cent.
Now $a_{\infty}=\frac{1}{u^{2}}=50$, and

$$
\begin{gathered}
a_{\overline{3 \overline{2}}}+a_{23]}+\ldots+a_{\overline{4}}=\frac{1-r^{32}}{i}+\frac{1-v^{2 s}}{i}+\ldots+\frac{1--\cdot!}{i} \\
\quad=\frac{1}{i}\left(s-\frac{a_{\overline{32}}}{s_{\overline{4}}}\right)=115 \cdot 3 .
\end{gathered}
$$

Therefore, the present value of the (c) annuity at the assumed rate of interest would have been $100-14 \cdot 4=85 \cdot 6$.

It need hardly be said that the assumption of a different rate of interest would materially alter the values of the two annuities both absolitely and relatively.
18. The " 1 " Annuities of the East Indian and other Indian Railways present a problem of a slightly different nature from those already discussed. The railways in question were originally constructed and worked by private companies under concessions from the Iudian Government, and were subsequently acquired by the Government under powers reserved in the contracts by which the concessions were granted. On taking over these railways the Government exereised an option of paying out the stockholders by means of terminable annuities, and to meet the convenience of those stockholders who desired to keep thicir capital intact, it was arranged that a certain sum should be deducterl from each payment of the terminable annuity and invested as a sinking fund to replace the capital on the expiration of the term of the anmuity. The reduced annuities thus created, with provision for a siuking fund, were called " B " "anuities.

In the case of the East Indian Railway the amuity is payable half-yearly for approximately 73 years from 1850 , and is subject to a half-yearly deduction of $\frac{1}{2} d$. for management and $S d$. for sinking funi. The sinking fund was originally estimated to aceumulate ly 195% (when
the annuity ceases) to $22 \frac{1}{2}$, "as near as may be ", per each 1 of the full annuity, lut it is obvious that the actual amount then available to replace eapital will depend upon the rate of interest realized on the sinking fund investments. Hence, the first step, in valuing the "B" Annuity, would be to estimate the amount receivable on the cessation of the annuity. 'Io do this as accurately as possible, it would be desirable to ascertain the amount of the sinking fund investments at the date of valuation and to assume the most probable rate of accumulation for the remainder of the period. But for present purposes let it be assumed that the sinking fund will accumulate throughout the entire term at the rate of 3 per cent with half-yearly rests. Then the capital repayable in 1953 per each 1 of amuity may be estimated at $\cdot 0 \dot{3} \times s_{1+6 \cdot 1}^{17 \%}$. Hence the value per unit of the " B " Ammuty in 1915 , to pay 3_{4}^{3} per-cent convertible half-yearly, would be

$$
\cdot 46458 \dot{3} a_{\overline{76} \mid}^{12 \%}+\cdot 0 \dot{3} \dot{3}_{1+6}^{13 \%} v^{16^{16} 6^{17} \%}
$$

which will be found to be 23 approximately.
17. American Railway Bonds and Brewery and Commereial Debentures present no special features-apart from the question of exchange in the former case and the liability in the latter case to redemption at par-in the absence of any special provision to the contrary-in the event of a winding-up. As a representative example of the latter type the following may be taken:

Required the value per-cent at 1 January 1915 to yield 4 per-cent effective, of debentures bearing interest at $4 \frac{2}{2}$ per-cent payable halfyearly on 1 January and 1 July, and redeemable on 1 January 1960 at par or on or after 1 January 1925 at the option of the issuing Company (or in the event of voluntary liquidation) at 10 per-cent premium.

A dividend of $4 \frac{1}{2}$ payable half-yearly represents $4 \cdot 0 \dot{0}$ per-cent on 110. This exceeds an effective rate of 4 per-cent. It must be assumed, therefore, that the option to redeem will be exercised. Hence, by formula (10), the required present value will be

$$
110 v^{10}+\frac{.04(0)}{j_{(2)}}\left(110-110 v^{10}\right)
$$

where v^{10} and $j_{(2)}$ are to lee calculated at 4 per-cent. The numerical result will be found, by 'lables II and VII, to be $111 \cdot 172$.
18. In all the foregoing examples the date of valuation has been taken as one of the days on which the dividend is payable, so that the
dividend begins to accrue from the date of purchase. In practice it will, of course, more often happen that it is required to find the value of a security at a date intermediate between the dates on which the dividend is payable. in such eases the security will include a certain amount of acerued dividend (unless the date of purchase precedes the dividend duedate by a few days only, in which case the security may be sold ex dividend), and it will be necessary to allow for this in calculating the price. The simplest course to pursue in all such eases is to value the security just after parment of the last dividend or just before payment of the next dividend, and to accumulate the former or discount the latter to the actual date of purchase. Take, as an example, a redeemable debenture earrying a half-yearly dividend, and let it be required to find its value with accrued dividend $\frac{1}{m}$ th of a half-year before the next dividend due-date, to pay j per annum convertible half-yearly. The value just before the next dividend is paid may be written symbolically as $A_{1}+\frac{g \mathrm{C}_{1}}{\underline{2}}$, and the discounted value $\frac{1}{m}$ th of a half-year previously will, therefore, be $\left(1+\frac{j}{2}\right)^{-\frac{1}{m}}\left(A_{1}+\frac{g \mathrm{C}_{1}}{2}\right)$. At the end of the half-year the interest to date on the purchaser's outlay will amount to

$$
\left[\left(1+\frac{j}{2}\right)^{\frac{1}{m}}-1\right]\left(1+\frac{j}{2}\right)^{-\frac{1}{m}}\left(\mathrm{~A}_{1}+\frac{g \mathrm{C}_{1}}{2}\right)
$$

which is identically equal to

$$
\frac{g \mathrm{C}_{1}}{\underline{2}}-\left[\left(1+\frac{j}{2}\right)^{-\frac{1}{m}}\left(\mathrm{~A}_{1}+\frac{g \mathrm{C}_{1}}{2}\right)-\mathrm{A}_{1}\right]
$$

Hence it appears that the dividend payable at the end of the half year will suffice, as it ought, to pay interest for $\frac{1}{2 m}$ th of a year and to write down the invested capital to A_{1}. In practice, interest for $\frac{1}{m}$ th of a half Year would be taken as $\frac{j}{2 m}$, and the value of the security would accordingly be taken as

$$
\begin{equation*}
\frac{\mathrm{A}_{1}+\frac{g \tilde{U}_{1}}{2}}{1+\frac{j}{2 m}} \tag{i9}
\end{equation*}
$$

or, more conveniently, as

$$
A_{1}+\left(\frac{1}{\because} g \mathrm{C}_{1}-\frac{1}{2 m} j A_{1}\right)
$$

in which the second term represents the excess of the full dividend which the purchaser will receive at the end of the half-year over the approximate interest on his invested capital for $\frac{1}{m}$ th of a half-year. A's income-tax will be deducted from the full dividend, although from the prrchaser's point of view only part of it represents interest, both g and j should be taken at net rates after deduction of tax.
19. In the United Kingdom the prices of marketable securities are nsually quoted inclusive of acerued dividend. To this rule, however, there is one important exception. In the case of Indian liupee Paper the purchaser has to pay, in addition to the market price, the interest accrued from the last dividend-date to the date of purchase. Americm and other securities, moreover, are uften offered for sale in this country either at a specified price plus accrued interest, or on a "yield basis," i.e., to yield some specified rate of interest. In the latter case, if A_{0} represent the value of the security, to yield the specified rate-saly j per annum convertible half-yearly-just after payment of the last half-year's dividend, then the correct price $\frac{1}{m}$ th of a half-year before the next dividend date would be $A_{0}\left(1+\frac{j}{2}\right)^{\frac{m-1}{m}}$. In practice, however, various approximations are used, and as these have the sanction of custom, it will generally be advisable to ascertain the particular aproximation employed by the firm offering the security in question, and to consider its cllict on the price. For example, the addition to A_{0} of $\frac{m-1}{m}$ thes of the enrent half-venr's dividend less simple discount thereon for ${ }^{1}$ th of a half-year at mate $\frac{\dot{j}}{\underline{-}}$-an approximation sometimes employed-may give rise 10 an apmeciable error if there is much difference between ! and j. The most usnal method, however, seems to be to add $\quad 1 . \Lambda_{0} \frac{m-1}{m}$ this ol a halferear's interest at rate $\frac{j}{2}$ less smople discount thereon at the same rate for the remainder of the half year, which gives a price of $\Lambda_{u}\left(1+\begin{array}{c}m-1 ; \\ m\end{array} ;-\frac{m-1}{m} \frac{j^{2}}{4 m}\right)$ as against
$A_{0}\left(1+\frac{m-1}{m} \underset{2}{2}-\frac{m-1}{2 m} \frac{j^{2}}{4 m}+\ldots\right)$, so that the error resulting from this approximation is small. In the case of a foreign security the use of a net rate, to allow for British income-tax, would not be practicable. An expedient sometimes adopted just before the end of the half-year (when the usual basi would entail an appreciable loss to a purchaser in the United Kingdom) is to purchase the security ex interest. If the practice of the purchaser paying accrued interest were adopted generally in the United Kingdom it would seem derirable that it should be based on the net rate.
20. When a redeemable security is bought to pay a rate of interest differing from the ratio of the dividend to the redemption price-that is, when it is bought at a preminm or discomen on the redemption price-a question arises as to how it should be dealt with on an investment basis, in order that the required rate of interest may be realized and that the invested capital may be gradually written down, or up, to the redemption value of the security. In the case of securities dealt in on the Stock Exchange the plan very frequently adopted is to debit the account for a given security with the market-value of the security at the beginning of the year or half-year, to credit it with dividends received and with the market-value of the security at the end of the period, and to determine the interest for the period by balancing the account; this method may be expected to approximate roughly to the theoretical method of proccdure, and it has the advantage of obviating any risk of a security being valued, as an asset, at a price exceeding its market-value.
21. It may, however, be considered desirable to deal with securities of this mature independently of the more or less accidental fluctuations of Stock Exchange quotations, and there are, besides, many such securities which are not publicly dealt in. A different method of procedure must then be adopted. It has been shown in Art. 10 that when a redeemable sceurity is bought to pay a rate of interest differing from the rate of dividend, the premium paid for the security over and above its redemption value, or the discount at which it is obtained, is the present value of an annuity of the excess of the rate of interest over the sate of dividend, or vice versi. It follows, therefore, that a possible method of procedure would be to construct a schedule for this ammity in the manner explained in Chapter IV ; the principal-repayments would represent the amounts to be written off, or added to, the invested capital at the end of each interval, and the periodical dividend decreased or increased by these amounts would give the interest for cach interval.

Thus, in the case of a debenture for 100 redeemable at par in 10 vears, bearing interest at 5 per-cent payable half-yearly, and bought to yield 4 per-cent convertible half-yearly, the premium of 8.176 paid by the purchaser would represent the value of $\frac{1}{2} a_{20}$ at the effective rate 02 . The successive principal-repayments in the case of this amuity will be $\frac{1}{2} v^{20}, \frac{1}{2} v^{19}$, \&c.-all at 2 per-cent-that is, 3365,3432 , \&c. These are the amounts which must be written off half-yearly from the purchase-money of $108 \cdot 176$, and the balance of the dividend available for interest will be $2 \cdot 1635$ for the first half-year, $2 \cdot 1568$ for the second half-year, \&c., which will be found to represent, as they ought, 2 per-cent on the amount of capital outstanding at the beginning of the first, sccond, \&ec, half-years.

If the debenture had borne interest at the rate of 3 per-cent and had been bought to yield 4 per-cent, the purchaser would have obtained it at a discount of 8176 , which again represents the value of $\frac{1}{2} a_{2 \overline{2}}$, at 02 effective. The principal-repayments contained in the successive payments of the amnity, must in this case be written on half-yearly to the purchase-moncy, and the interest for each half-year will be found by adding to the dividend the amount written on to capital at the end of the half-ycar.
22. It appears, therefore, that the amounts by which the capital invested in a redeemable security should be periodically written up or written down, as the case may be, could be ascertained by constructing a schedule showing the principal and interest contained in the successive payments of an annuity of the difference between the dividend and the rate of interest required to be realized. But the same result may be more directly attained on a book-keeping basis by debiting the security from interval to interval with interest at the requisite rate on the capital outstanding at the beginning of the interval, crediting it with the dividend, and writing the difference on to or off the capital according as the interest is > or < the dividend. If a schedule be required to check the accuracy of the entries, it may be constructed at the outset by a similar method. For example, the schedule in the case of a debenture for 100 redeemable in $5 \frac{1}{4}$ years at par, bearing interest at 6 per-cent payable half-yearly (the next payment being due three months hence), and bought to yield 4 per-cent convertible half-yearly, will be as follows:

Invested Capital $=\frac{108 \cdot 983+3000}{1.01}=110 \cdot 874$.

Hali-Y'ear No.	Capital outstanding	Interest	Dividend less Interest (to be written off Capital)
0	$110 \cdot 874$	1-109	1.891
1	$108 \cdot 953$	$\because \cdot 180$	-820
2	$105 \cdot 163$	$2 \cdot 163$	-837
3	107:326	$2 \cdot 147$	-853
4	$106 \cdot 473$	$\because \cdot 129$.871
5	105602	$\cdots \cdot 112$	-848
6	10.4.714	$2 \cdot 094$	-906
7	103.508	$2 \cdot 076$.92.4
8	102884	$2 \cdot 058$	-910
9	101912	$2 \cdot 039$. 961
10	100.9 sl	$2 \cdot 019$.981

23. An interesting question arises as to the incidence of income-tax in relation to the class of securities under consideration. It has been stated in Chapter IV that when a loan or debt is repayable by an annuity income-tax is chargeable on that part only of each annuitypayment which represents interest. But in the case of redeemable securities bought at a premium or at a discount, income-tax is invariably charged on the dividend without any reference to the fact that in the one case part of each dividend consists of capital applicable to the gradual reduction of the premium, or that in the other the dividend does not represent the whole of the interest realized by the investor. The question may therefore be asked, What would be the present value, to pay a given rate of interest subject to a fixed rate of income-tax, of a redeemable security bought at a premium-income-tax being chargeabla on the full dividend?

It will be convenient to determine, as a preliminary, the present value to yield the effective rate i, subject to income-tax at rate t per unit, of an annuity of 1 per annum payable annually for n years, the whole of each annuity payment being chargeable with income-tax at rate t per unit. The net amount of each annuity-payment, after deduction of tax, will be $1-t$, and the net rate of interest to be realized on the amnuity is $i(1-t)$. Hence it follows that the present value of the annuity under the conditions specified is $(1--t) a_{n}^{\prime-}$, where the dash denotes that the annuity-value is to be calculated at the effective rate $i(1-t)$ instead of i.

Consider，now，the case of an n－year debenture of 1 redeemable at par，bearing interest at g per unit，payable half－yearly and bought at a premium of k per unit to rield rate j convertible half－yearly，subject to income－tax at the rate of t per unit．Each half－yearly divilend may be divided into two parts－both subject to tax－namely，$\frac{j}{2}$ ，which represents interest on 1 at rate j convertible half－y carly，and $\frac{1}{2}(g-j)$ ，which represents the half－yearly payment to liquidate the premium of k with interest．Now the former，after deduction of tax，represents interest less tax on 1 ，and the value of the latter，after deduction of tax，to yield j convertible balf－yearly subject to tax，is the same as the present value to y yeld the effective rate $\frac{j}{2}$ subject to tax，of a $2 n$－year annuity of $\frac{1}{2}(g-j)$ ，the whole of each payment being chargeable with tax．Hence the present value of the debenture under the specified conditions will lee

$$
\begin{equation*}
1+\frac{1}{2}(1-t)(g-j) a^{\prime} 2 n l . \tag{20}
\end{equation*}
$$

where the dash denotes that the amnity－value is to be calculated at the effective ratc $(1-t) \frac{j}{2}$ ．

As an example，let it be reguired to find the value at 4 per－cent con－ vertible half－yearly，subject to tax at $1 s$ ．in the $£$ ，of a debenture for 100 redecmable in 10 years at par，and bearing interest at 6 per－cent payable half－yearly．Here $t={ }^{\circ} 5 ; g=06 ; j=0$ 年；and $a^{\prime}=\frac{1-(i \cdot 019)^{-20}}{019}$ which $=16510$ ．Hence the required present value $=115.6 \mathrm{~s}$ ．If the fact of income－tax being chargeable on the entire dividend he left out of accoment，the present value would be $\left[1+.01 \times a_{20}^{2 \%}\right] \times 100$ which $=116: 351$ It will be seen，therefore，that the adjustment is of some practical importance．

24．The investigations of Arts．$\overline{5}$ to 23 have been limited to securities redecmable in one sum，but they may be extended，by a simple． greneralization，to securities redeemable by any fixed instalments and bearing interest at a fixed rate on the ontstanding instalments． This follows at once from the fact that any such security may be considered as consisting of a number of separate securities cach of which is redeemable in one sum．As an example of the method of generalization it will be sufficient to consider the fundamental problem of valuation．

Let $C_{1}, C_{2}, \ldots C_{r}$ represent the sucpessive instalments by which the prineipal is to be redeemed.
, $n_{1}, n_{2}, \ldots n_{r}$, the respective numbers of years at the expiration of which the suceessive instalments become payable.
, $K_{1}, \mathrm{~K}_{2}, \ldots \mathrm{~K}_{r}$, the present values, at the valuation. rate of interest, of C_{1} due n_{1} years henee, \&゙c.
, g
" the fixed rate of dividend to be paid on the outstanding instalments.
, $A_{1}, A_{2}, \ldots A_{r} \quad \because \quad$ the present values, at the valuationrate, of the separate instalments with the relative dividends.

Assume the dividend to be payable p times a year-the next dividend being due $\frac{1}{p}$ th of a year hence-and let it be required to find the value of the entire seenrity at the effective rate i.

Then, by formula (2),

$$
\begin{aligned}
& A_{1}=K_{1}+\frac{!}{j_{(p)}}\left(\mathrm{C}_{1}-K_{1}\right) \\
& A_{2}=K_{2}+\frac{g}{j_{(p)}}\left(\mathrm{C}_{2}-\mathrm{K}_{2}\right) \\
& \vdots \\
& \vdots \\
& A_{r}=K_{r}+\frac{g}{j_{(P)}}\left(\mathrm{C}_{r}-K_{r}\right)
\end{aligned}
$$

Hence, by addition, if A, K, and C , respectively, be written for $\left(A_{1}+A_{2}+\ldots+A_{r}\right),\left(K_{1}+K_{2}+\ldots+K_{r}\right)$, and $\left(C_{1}+C_{2}+\ldots+C_{r}\right)$,

$$
\begin{equation*}
\mathrm{A}=\mathrm{K}+\frac{g}{j_{(p)}}(\mathrm{C}-\mathrm{K}) . \tag{21}
\end{equation*}
$$

where \mathbf{C} represents the total capital repayable, \mathbf{K} the sum of the present values, at the valuation-rate, of the successive iastalments of C , eacb being discounted for the period to clapse before it becomes payable, and A the present value, at the valuation-rate, of the total security.
25. The advantage of the algebraical transformation by which formula (2) is obtaned from formula (1) - or, by which, in other words
the present value of the dividend is expressed in terms of the present value of the capital repayable-becomes very apparent in connection with securities under which the principal is repayable by instalments instead of in one sum. In such cases, if it be necessary to value the several instalments with the dividends thereon by individual caleulation, a considerable saving of labour will obviously be effected by expressing the value of the dividends in terms of the value of the capital repayable, while, if it be possible to find algebraical formulas for the sum of the present values of the successive instalments and the sum of the present values of the dividends, the expression for the latter sum will generally be found to be much more complex than that for the former. For example, let it be required to find the present value, at the effective rate i, of a debenture for 1 redeemable at par by equal annual instalments spread over t years and bearing interest, payable annually, at rate g on the amount from time to time outstanding. The value might obviously be written in the form

$$
\begin{aligned}
& \frac{1}{t}\left(v+v^{2}+\ldots+v^{t}\right)+\frac{g}{t}\left(t \cdot v+\overline{t-1} \cdot v^{2}+\ldots+v^{t}\right) \\
= & \frac{1}{t} \cdot a_{t}+\frac{g}{t}\left[t a_{i\rceil}-v(\mathrm{I} a)_{i \cdot 1}\right]
\end{aligned}
$$

which would involve the evaluation of an increasing annuity.
By means of formula (21), in which K will $=\frac{1}{t} a_{\bar{t}}$ and C will $=1$. the result is at once obtained in the simple form

$$
\frac{1}{t} \cdot a_{\bar{t}}+\frac{g}{i}\left(1-\frac{1}{t} a_{\bar{t}}\right)
$$

26. Formula (21) may be established by general reasoning precisely similar to that of Art. 6. If the dividend were payable p times a year at rate $j_{(p)}$ per annum, the present value of the whole security, to yield the nominal rate $j_{(p)}$, i.e., to yield the effective rate i, would obviously be C, and the present value of the dividends alone would consequently be C-K. But the dividends are actually at rate g payable p times a year, and their value $b y$ simple proportion will, therefore, be $\frac{g}{j_{(p)}}(\mathrm{C}-\mathrm{K})$. Hence, the value of the entire security is $\mathbf{K}+\frac{g}{j(p)}(\mathbf{C}-\mathbf{K})$,
27. The method of repayment by fixed instalments has been extensively adopted by foreign governments in connection with their loan-issues. In such cases interest is usually payable half-yearly, and the general valuation formula will take the form

$$
\mathrm{K}+\frac{y}{j_{(2)}}(\mathrm{C}-\mathrm{K}), \text { or } \mathrm{K}+\frac{g(1+\sqrt{1+i)}}{2 i}(\mathrm{C}-\mathrm{K}) .
$$

As an example, the Chinese 6 per-cent Gold Loan of A pril 1885 may be taken. In this case it was provided that interest should be paid halfyearly on 1 January and 1 July, and that the principal should be repaid at par by annual drawings in 15 approximately equal annual instalments, of which the first was paid on 1 July 1901. Let it be required to find the price per-cent at which a syndicate could have taken up the entire loan as at 1 July 1895 in order to realize interest at the effective rate of $5 \frac{1}{2}$ per-cent.

$$
\begin{aligned}
& \text { Here } \quad \mathrm{K}=\frac{100}{15}\left(v^{6}+v^{2}+\ldots+v^{20}\right) \text { at } 5^{\frac{2}{2}} \text { per-cent } \\
& =\frac{100}{15}\left(\alpha_{\overline{20}}-a_{51}\right)=51 \cdot 201 \\
& \mathrm{C}=100 \\
& g(1+\sqrt{1+i})=\cdot 06(1+\sqrt{1 \cdot 055})=\cdot 12163
\end{aligned}
$$

Hence the required price per-cent $=51 \cdot 201+1 \cdot 1057 \times 48 \cdot 799=105 \cdot 158$.
Another example, of a rather more complex character, is afforded by the French 3 per-cent Redeemable Rentes. This loan originally consisted of 175 series, redeemable by annual drawings at par, as follows:

Interest is payable quarterly on 16 January, April, July, and October.
On the assumption that the series drawn for redemption are paid off annually on 16 April, let it be required to fincl, on the basis of an effective rate of $3 \frac{1}{2}$ per-cent, the capitalized value per-cent of the entire outstanding balance of the loan as on 16 April 1915.

Forty-five series having been paid off in 1879-1915, there remain 130
series outstanding to be repaid as shown above．Hence，if C be taken as 100 ，

$$
\begin{aligned}
\mathrm{K}= & \frac{100}{130}\left[2\left(v+v^{2}+\ldots+v^{10}\right)+3\left(v^{11}+v^{12}+\ldots+v^{23}\right)\right. \\
& +4\left(v^{24}+v^{25}+\ldots+v^{30}\right)+5\left(v^{31}+v^{32}+\ldots+v^{35}\right) \\
& \left.+6\left(v^{36}+v^{37}+v^{35}\right)\right] \\
= & \frac{100}{13}\left[6 a_{\overline{i s 1} 1}-\left(a_{\overline{30} \mid}+a_{\overline{33}}+a_{\overline{30}}+a_{\overline{30} \mid}\right)\right]
\end{aligned}
$$

the numerical value of which must be calculated at $3 \frac{1}{2}$ per－cent．

$$
\text { By Table IV, } 6 a_{\text {B5 }} \text { at } 3 \frac{1}{2} \text { per-cent }=\quad 1: 5 \cdot 047
$$

$$
\begin{aligned}
& a_{10} \quad, \quad, \quad=5 \cdot 317 \\
& a_{33} \quad " \quad, \quad=15 \cdot 620
\end{aligned}
$$

$$
\begin{aligned}
& \text { "河 }{ }^{\text {可 }} \text {., }=\underline{0.001} \\
& \text { - } 62330 \\
& K=\frac{100}{130} \times 62.717
\end{aligned}
$$

whence
：aml，by Table VII，$j_{(t)}^{-}$at $3 \frac{1}{2}$ per－cent $=1 \cdot 01303$ ．
Hence the requircd value per－cent

$$
=48 \cdot 244+\frac{.0: 3}{.035} \times 1.01: 303 \times 51.756=93 \cdot 184 .
$$

28．It should be earefully noted that the values foum in the examples given in the last article are in both eases values of the entire loan per－cent，not those of individual bonds for 100 ．It is not possible to valne a loan redeemable by drawings，otherwise than as a rehole－ exeept as a matter of average－because the value of any given bond will lepend upon when that partieular bond may happen to be draw for repayment．For instance，in the case of the Chinese loan disensect above，it has been shown that the value of the whole ioan，as at 1 July 1595 ，to pay 5h per－cent，wuld have heen 10515 s per－eent，but the value of any une of the bonds which was drawn for repayment in 1901 would have heen only $100 v^{6}+6 \cdot 0815 a_{6}$ at $5 \frac{1}{2}$ per－cent，or
102.905; whereas the value of a bond which remains outstanding until 1915 would be $100 v^{20}+6.0515$ at 20 , or 106919 .

Inasmuch, however, as bonds forming part of a loan redeemable by drawings are frequently bought-as an investment with an element of speculation-at a price proportionate to the value of the entire loan, it liecomes a matter of some interest to determine when any given bond should become repayable in order that it may yield the same rate of interest as the entire loan. Let the symbols K, C, and g refer, with the usual significations, to the whole loan, let C_{1} be the capital repayable under the particular bond, and let n be the number of years that should elapse before this bond is drawn for repayment in order that it may yield the same rate of interest- i say-as the whole loan. Then the value of the particular bond will be $\mathrm{C}_{1} v^{n}+\frac{g}{i}\left(\mathrm{C}_{1}-\mathrm{C}_{1} v^{n}\right)$; and the value of the entire loan is $\mathrm{K}+\frac{g}{i}(\mathrm{C}-\mathrm{K})$. Then, since the price given for the particular bond is, by hypothesis, proportionate to the value of the entire loan, it follows that

$$
\mathrm{C} v^{n}+\frac{g}{i}\left(\mathrm{C}-\mathrm{C} v^{n}\right)=\mathrm{K}+\frac{g}{i}(\mathrm{C}-\mathrm{K})
$$

whence $\mathrm{C} v^{n}=\mathrm{K}$.

It appears, therefore, that $n=$ the equated time, at the rate of interest required to be realizel, for the several instalments by which the loan is redecmable. Thus, in the case of a loan standing at a premium, any particular bond will yield a lower or higher rate than that yielded by the loan as a whole, according as it is drawn for repayment before or after the equated time for the outstanding instalments, while in the ease of a loan standing at a discount the converse will hold.
29. Another method of repayment frequently adopted by foreign grovermments-and also by some commercial companies-is that of the cumulative or accumulative sinking-fund. A loan is said to be redeemable by a cumulative sinking-fund when a fixed sum is periodicaliy. applied to the service of the loan-that is, to payment of interest and to repayment of principal by drawings, purchase or otherwise-so that the sum available for repayment of principal is increased from time to time by the interest that would have been payable on the repaid portion of the principal if it had been still outstanding. The only case that it is necessary to consider is that in which the sinking-fund is applied to
redeem the loan by drawings made at regular intervals. In this case, if the periodical drawings take place with the same frequency as that with which interest is payable, the transaction simply takes the form of the reparment of principal and interest by an annuity. Let C be the capital repayable, g the rate of dividend per amum, payable half-yearly, reckoned on the eapital repayable, z the rate of sinking-fund per annum, payable half-yearly, also reckoned on the capital repayable, and j convertible half-yearly, the rate of interest on which the transaction is based. Then the sum to be applied half-yearly to the service of the loan will be $\frac{1}{2}(g+z) \mathrm{C}$, and since the principal of C , with interest at rate g payable half-yearly, is to be liquidated by an annuity of $(g+z) \mathrm{C}$ payable half-yearly, it follows that, if n be the number of years whicls will elapse before the whole loan is repaid,

$$
\mathrm{C}=\frac{1}{2}(g+z) \mathrm{C} . a_{\overline{2 n}} \text { at rate } \frac{1}{2} g .
$$

"hence
or

$$
1=\frac{1}{2}(g+z) \frac{1-\left(1+\frac{g}{2}\right)^{-2 n}}{\frac{1}{2} g}
$$

$$
z=(g+z)\left(1+\frac{g}{2}\right)^{-2 n}
$$

and

$$
n=\frac{\log (g+z)-\log z}{2 \log \left(1+\frac{g}{2}\right)}
$$

Now from the point of view of the lender the sccurity consists of an annuity of $(g+z)$ C per annum payable half-yearly for this term of n years. Hence its value, to pay j convertible half-yearly, is given by the formula

$$
\begin{align*}
& \mathrm{A}=\frac{1}{2}(g+z) \mathrm{C} a_{\sqrt{n}} \text { at rate } \frac{j}{2} \\
&=\mathrm{C} \frac{a_{2 n}}{a_{2 n}} \text { at rate } \frac{1}{2} j \tag{29}\\
& \text { at } \frac{1}{2} g
\end{align*} .
$$

where n has the value obtained above.
30. In practice the drawings usnally take place yearly and interest is payable half-yearly; but no allowance is made for interest on the first half-year's interest in finding the balance available out of the fixed annual sum, at the end of each year, for repayment of principal, so that the operation of the sinking-fund is exactly the same as if interest were paid yearly.

Let the capital repayable be, as before, $(1$, and the rate of dividend g payable half-yearly; let the cumulative simking-fund be z per unit payable yearly, and let it be required to find the value of the whole loan to yield the effective rate i. Then the fixed amnual sum applied to the service of the loan will be $(g+z) \mathrm{C}$, and if n be the number of years in which the loan will be entirely redeemed
whence

$$
\begin{aligned}
& C=(g+z) C(\pi n \text { at rate }! \\
& n=\frac{\log (y+z)-\log z}{\log (1+y)}
\end{aligned}
$$

and, since the anount payable for repayment of principal increases each year by g times the capital repaid in the preceding year, the amounts of principal drawn for repayment at the end of the 1st, 2nd, Brd, \&e., years will be $\approx \mathrm{C}, \approx \mathrm{C}(1+y), \approx \mathrm{C}(1+g)^{2}$, $d c$. From the investor's point of view, therefore, the security may be regarded as a lown of C repayable by ammal instalments of $\approx \mathrm{C}, z \mathrm{C}(1+g) \ldots z \mathrm{C}(1+g)^{n-1}$ with interest at rate g payable half-yearly. Now the present value of the capital repayable to yield the effective rate i

$$
\begin{aligned}
= & v \cdot z \mathrm{C}^{\prime}+v^{\prime 2} z \mathrm{C}(1+g)+\ldots+v^{n} \approx \mathrm{C}^{\prime}(1+g)^{n-1} \\
= & \frac{z \mathrm{C}}{1+g}\left\{v \cdot(1+g)+v^{2}(1+g)^{2}+\ldots+v^{n}(1+g)^{n}\right\} \\
= & \frac{\approx \mathrm{C}}{1+g} u^{\prime} \bar{n} \text { at rate } i^{\prime} \text { where } i^{\prime}=\frac{i-g}{1+y} \\
& \frac{z \mathrm{C}}{1+\imath} s^{\prime \prime} \bar{n} \text { at rate } i^{\prime \prime} \text { where } i^{\prime \prime}=\frac{g-i}{1+i}
\end{aligned}
$$

Hence, by Formula (21), the present value of the loan
or

$$
\begin{align*}
& =\frac{z \mathrm{C}^{\prime}}{1+y} a^{\prime} \bar{n}+\frac{g}{j_{[=2}}\left[\mathrm{C}-\frac{z \mathrm{C}}{1+!} a^{\prime} \pi\right] . \tag{23a}\\
& \frac{z \mathrm{C}}{1+i} \cdot s^{\prime \prime} \bar{n} \left\lvert\,+\frac{g}{j_{(2)}}\left[\mathrm{C}-\frac{z \mathrm{C}}{1+i} s^{\prime \prime} \bar{n}\right] .\right. \tag{236}
\end{align*}
$$

the former expression being applicable when i is $>y$ and the latter when g is $>i$.

Or, since $(. y+z) a_{n}$, at rate $g,=1$, whence $(1+g)^{n}=\frac{y+z}{z}$, the present value of the capital repayable may be expressed as

$$
v \approx \mathrm{C} \frac{1-\frac{y+z}{z} r^{n}}{1-r(1+g)} \text { or } \mathrm{C} \frac{\tilde{z}-(g+z) c^{n}}{i-g},
$$

so that the present value of the loan takes the form

$$
\begin{equation*}
\mathrm{C} \frac{z-(g+z) v^{n}}{i-g}+\frac{g}{j_{(z)}}\left[\mathrm{C}-\mathrm{C} \frac{z-(. g+z) v^{n}}{i-g}\right] \tag{23c}
\end{equation*}
$$

Or, again, (see T.I.A., vol. sivii, p1. 96-97) the value may be written as

$$
\begin{equation*}
\mathrm{C} \frac{a_{n \mid}^{i}}{a_{n}^{g}}+g \frac{\sqrt{1+i}-1}{2(i-g)}(\mathrm{C}-\mathrm{C} \frac{\overbrace{n}^{i}}{a_{n=1}^{g}}) \tag{23d}
\end{equation*}
$$

Here the first term represents the value of the loan on the basis of interest being payable yearly, and the second the additional value due to the interest being in fact payable half-yearly. For purposes of numerieal calculation Formula (23d) would appear to be the more convenient when the value is required to yield an effective rate, and Formula (23c) when it is required to yield a nominal rate payable half-yearly.*

In the foregoing solution it has been assmed implicitly that n is integral. This will be the case if the term of years over which the drawings are to extend has been settled first, and the cumulative sinkingfund has been calculated aceordingly. But in the more usual case, when the amount of the sinking-fund has been fixed in the first instance, saly at 1 or $\quad-$ per-cent, the value of n will not, as a rule, he an exact integer, and will be equal, say, to $n^{\prime}+f$, where n^{\prime} is an integer and f a proper fraction. In this case the capital repayable in the first n ' years may be ralued in the ordinary way, except that $\mathfrak{C}(g+z) a_{\overline{y^{\prime}} 1}$ must be substituted for C , and to the result thus obtained must be added the value of $\left.C\left[1-(g+z) a_{n}\right]\right]$ repayable at the end of $n^{\prime}+1$ years.

The Chinese dold Loan of 1896 bears interest at 5 per-cent payable half-yearly, and is redeemable by amual drawings spread over 36 years. What would have been the value of the loan per-cent, at date of issue, to pay $5 \frac{1}{2}$ per-cent effective?

$$
\begin{aligned}
& a_{\text {siji }} \text { at } \bar{\pi} \text { per-cent }=16547 \text {; and at } 5 \frac{1}{2} \text { per-cent } 15.536 \\
& \cdot 0.5 \times \frac{\sqrt{1 \cdot 0.5}-1}{2(\cdot(1.5)-05)}=13566 .
\end{aligned}
$$

Hence it will be found that the required value $=93 \cdot 590+529=91719$.
It will be observed that in the above example the value of the loan has bern found as at the date of issue, but preciscly the same method will be applicable to a valuation at any ammal date during the curreney of the loan, exeept that the cmmative simking fund must be taken as the ration of the sum applicable to repayment of prineipal at the next annual drawing to the amomen of principal outstanding at date of sahuation.

* For atproxmate fommats sere $/ . / .1$, alix, 1 . 290.

31. It may here be mentioned that in the case of a lom repayable by drawings by means of a cumalative sinking fund, the schedule showing the opration of the sinking fund would differ slightly from the ordinary reparment schedule for a loan repayable by a terminabla ammity, owing to the fact that only an integral number of bonds could be repaid at each drawing. The necessary adjustment may be easily made ly earying forward the mapplied balance from each drawing to the next following drawing. 'Thus, in the case of a 5 per-cent loan of $1,000,000 \mathrm{in} 10,000$ honds of 100 each, repayable at par in 30 years by annual drawings by the operation of a cumulative sinking fund, the total amount to be applied annually to the service of the loan would be $1,000,000$ a_{30} number of bonds to be drawn for repayment each year would be as follows:

n	$\frac{1.000,000}{s_{301}}(1+i)^{n-1}$	Amount avaiable for nth Drawing	Number of Bonds Repaid at nth Drawing	Balance Forward
1	$15,051 \cdot 1.4$	$15,0.51 .41$	150	$51 \cdot 11$
\because	$15.501 \cdot 01$	15. $\times 5.554 .5$	158	$55 \cdot 1.5$
3	$16.594 \cdots 1$	$16.619 \cdot 66$	166	$49 \cdot 66$
4	17.423 .92	17.173.55	174	73.58
\&.	Sc.	dc.	\&.	de.

Or, a full schedule, showing the interest and drawings for each year, might he constructed in the following wat:

n	Amonnt of Londs outstanding at beginning of nth year	$\begin{aligned} & \text { Interest } \\ & \text { for } \\ & \text { nhly yeals } \end{aligned}$	13.0514 .1 poss interest for nth year	Amotint availathe for nth drawing	No. of Bonis repaicl at nth drawing	Balance after nth Jrawing	Interest at 5 1ur-cent (1)1 Balance
1	1,000,000	50000	$15,0.91 \cdot 4.4$	$15,051 \cdot 11$	150	51.41	2.57
2	985,000	19,2-23	$15,501 \cdot 1.1$	$15,855 \cdot 45$	155	5.545	2.77
3	96!, 200	4-, 160)	$16.5011 \cdot 14$	1 $1,619 \cdot 66$	166	419.4if	$2 \cdot 18$
4	3-2,600	47.6830	17,121.14.	17,47358	174	73.58	$3 \cdot 68$
\bar{j}	935,200	46,760	15, 2 ! 11.11	18,36870	183	$68 \% 0$	$3 \cdot 41$
\&.	\&c.						

As a result of the practical adjustment of the periodical drawings, the series of parments made by the borrower takes the form of a slightly varying annuity, instead of an annuity of uniform amount. Thus, in the example discussed abore, the successive annual payments made on
foot of prineipal and interest are $65,000,65,050,65,060,65,030$, 65,060, \&c., instead of 65,0514 each year. This, however, would not make any appreciable difference in the value of the loan.
32. In the foregoing discussion of the subject of loans repayable by instaments, it has been assumed throughout that the principal is to be repaid in some detinite way. It may, however, often happenapart from any question of default (a contingeney which does not enter into the theory of the subject) - that the borrower has power to suspend or inerease the sinking fund, or other provision for redemption, at his option. In such cases theoretical methods of valuation would have to be employed with caution. In fact, in every case the precise terms of the contract must be studied, and due consideration must be given to all their bearings on the problem of valuation.

One case which may be specially mentioned is that in which the borrower rescrves the option of purchasing bonds in the market instead of redeeming at par. Such an option is of course material only when the price would normally be below par, and when there is a free market in the bonds-that is, when they are not wholly or largely held by a single investor, or by a number of investors acting together, who can stand out for redemption at par. The problem, therefore, to be considered is that of the valuation of a comparatively small portion of the loan to yield a rate greater than g.

It is possible, or even probable, that as the term of repayment draws to an end the borrower may be compelled, owing to the restriction of the market and the consequent rise in price, to sedeem at par, but the only safe course to adont in valuing a small amount of the loan would appear to be to assume that it will be redeemed at par at the end of the term. It is necessary, however, to distinguish between two cases. If the amounts to be cancelled annually, by drawings or purchase, whether on the cumulative system or otherwise, are fixed, then n will also be fixed. But if a cumulative sinking-fund of fixed amount is to be applied in redemption of the loan, the value of n will depend on the prices at which the bonds are purchased for eancelment. In this ease it seems reasonable to assmme that the bonds will be purchasable at prices calculated to yield rate i-or in other words that the sinking fund will be annually invested in the loan at rate i, so that $z s_{n}$ at rate $i=1$. In each case the value of the loan per unit, if the interest at rate g be payable half-yearly, will be $1-\left(i-g s_{1}^{(2)}\right) a_{\bar{n} \mid}$.
23. The method of gradually writing down or writing up a redeemable security to its redemption price has been disenssed in Art. $00-2$ n for the case of a security redemable in one sum, and an identically similar process will obviously apply to a loan redeemable by instalments, or, in fact, as stated in Art. 15 of Chapter IV, to any series of payments. As an alternative methool, in all cases, the security may be kept at its purchase-price until redemption, or during any other period, and the sinking fund for writing the capital value up or down may be carried to a separate accomnt. But if that course be adopted, the sinking fund must be accumulated at the rate of interest realized on the purchase price of the security; otherwise there will be a discrepancy between the accumulations of the sinking fund and the sum required to write down, or write up, the eapital value of the security. It may happen, however, that an investor desires to realize a certain rate of interest on his original invested capital until redemption, and to accumulate his sinking-fund at some other rate. This suggests the question, What price should be paid for a security to yield the investor a given effective rate, i^{\prime} say, on the purchase-money until redemption, and to admit of the accumulation of the sinking-fund at some other rate i ? The question is the same as that discussed in Chapter IV, Art. 16, except that in the present instance it is assumed that the remunerative rate i^{\prime} is to be realized on the original invested capital only, and that the sinking-fund, whether to write down or to write up the original capital-that is, whether positive or negative-is to be accumulated at the reproductive rate i. Hence, by Formula (12) of Chapter $I N$, if A be the present value of the security at rate i and $A^{i^{\prime} \& i}$ its value on the special basis,

$$
\begin{equation*}
\mathrm{A}^{i^{\prime} \& i}=\frac{\mathrm{A}(1+i)^{n}}{1+i^{\prime} \delta_{n}} \text { or } \frac{\mathrm{A}}{1+\left(i^{\prime}-i\right) a_{n i}} . \tag{24}
\end{equation*}
$$

where n is the term over which the security extends.
This result is quite general on the conditions stated, but it will seldom be applicable in practice except in the case of a security bought at a premium, in which case an investor may desire to replace the premium by investing the excess of the periodical dividend over the interest on his capital in securities yielding a lower rate.

Consider, for example, the case of a debenture redeemable at par in n years and bearing interest at rate g payable annually; and assume that the investor desires to realize interest at rate i ' on the purchase-
money. If g is $>i^{\prime}$, the debenture will be bought at a premium, and ite value to admit of the purchaser replacing the premium at redemption by a sinking-fund invested in securities yielding rate i will be correctly given by Formula (24) as $\frac{1+g s_{n}}{1+i^{\prime} s_{n}}$. The annual interest on this at rate i^{\prime} will be $i^{\prime} \cdot \frac{1+\frac{g s_{\bar{n}}^{-}}{1+i^{\prime} s_{n}^{\prime} \mid}}{}$, and the balance of the dividend, namely, $g-i^{\prime} \frac{1+g s_{n \mid}^{-}}{1+i^{\prime} s_{n}^{-}}$, or $\frac{g-i^{\prime}}{1+i^{\prime} s_{n}}$, if invested and accumulated for n years at rate i, will amount, on the redemption of the debenture, to $\frac{\left(g-i^{\prime}\right) s_{n}}{1+i^{\prime} s_{n}}$, or $\frac{1+g s_{\bar{n}}}{1+i^{\prime} s_{\bar{n}}}-1$, which will exactiy replace the premium paid by the purchaser. If, however, i^{\prime} is $>g$, the debenture will be bought at a discount, and the annual dividend wall be insultieient to meet the interest. In this case the formula $\frac{1+g s_{\bar{n}}}{1+i^{\prime} s_{\bar{n}}}$ would correctly represent the value of the debenture if the purchaser desired to realize some other-usually higher-rate i on the capitalised balance of his interest. But as a rule he will be content to realize i^{\prime} on his whole invested capital (including the capitalized interest): and in that case the value will be $\frac{1+g s^{\prime} \overline{n \prime}}{1+i^{\prime} s_{\bar{n}}^{\prime}}$ or $1-\left(i^{\prime}-g\right) a_{\bar{n}}^{\prime}$.
34. Many problems arise in practice in connection with the conversion of securities and the consolidation of loans. The fundamental principle to be observed in transactions of this nature is that the converted or consolidated security should be equivalent to the old security. Hence, apart from any special circumstances which might. render it proper to value the new and old securities at diflerent rates of interest, the procedure in all cases will be in the first place to fix the rate of interest upon which the conversion or consolidation is to be based, and then to so adjust the terms of the transaction that the new security shall be equivalent, at that rate of interest, to the sccurity which it replaces. In the case of the conversion of a marketable security, the rate of interest to be employed should be such as to leave the market value unaltered, and it would, therefore, be determined by ascertaining the rate of interest yielded by the old security on its market price; in other cases the rate to be employed would have to be determined by reference to the rate obtainable, at the time of conversion, on similar securities.

The following examples will sufficiently illustrate the subject-
(a) A security quoted at A per-cent, and yielding at that price rate j convertible half-yearly, is to he converted into debentures bearing interest at rate g payable half-yearly and redeemable in n years at par. What amount of debentures should be given for each $£ 100$ of the existing security?
If X be the required amount, then since the new security must be equivalent at rate j to the old

$$
\frac{1}{2} q \mathbf{\lambda} a_{2 n}+r^{2 n} \mathbf{~}=\mathbf{A}
$$

where $a_{\overline{2 n}}$ and $r^{2 n}$ are calculated at rate $\frac{1}{2} j$,
whence

$$
\mathrm{X}=\frac{\mathrm{A}}{1+\frac{1}{2}(g-j) a_{\overline{2 n} \mid}}
$$

On comparison of the result with Formula (24) it will be seen that the problem is identical with that of finding the value of the security to yield g per annum payable half-yearly for n years and to admit of the difference between A and X being written on or off by the accumulation of a sinkingfund at rate j convertible balf-yearly.
(b) A company proposes to convert its existing debentures, bearing interest at 6 per-cent payable half-yearly, and redeemable at par in 5 years, into an equal amount of debentures bearing interest at $4 \frac{\pi}{2}$ per-cent payable halfyearly. On the assumption that the existing debentures are quoted at a price to pay 4 per-cent convertible halfyearly, when should the new debentures be redeemable?
Let n be the number of years at the expiration of which the converted debentures should be redeemed.
Then $1+(\cdot 03-02) a_{10}=1+(.0225-\cdot 02) a_{20 n 1}$ where the annuity-values are to be calculated at 2 per-cent.

$$
\therefore \quad a_{2 n}=\frac{.01}{.0025} a_{10}=35 \cdot 93
$$

On reference to a 2 pereent aunuity table it will be found that $a_{67}=3592$.
Hence the new debentures should be redcemable at par in 32 years.
(c) A borrower has obtained at different times three loans of $£ 5,000, £ 2,000$, and $£ 4,000$, repayable with interest at the respective rates of $5,4 \frac{1}{2}$, and 4 per-cent, convertible halfyearly, by annuities payable half-yearly on 1 June and 1 December, each annuity having been originally for a term of 30 years. He proposes to consolidate the loans as on 1 June 1900, when 20 instalments remain to be paid in respect of the $£ 5,000$ loan, 25 in respect of the $£ 2,000$ loan, and 35 in respect of the $£ 4,000$ loan, into a single loan repayable with interest by a single terminable annuity payable halfrearly from the following 1 December, and he desires to know (i) what annuity he would have to pay in order to redeem the consolidated loan in 15 years; (ii) what would be the term of the annuity if he were to pay a balf-yearly instalment equal to the sum of the annuities at present payable in respect of the existing loans.
It must be assumed that the borrower is not entitled to pay off the loans otherwise than by the stipulated annuities, otherwise he would have exercised his right to pay off the balance of the 5 per-cent loan when obtaining the $4 \frac{1}{2}$ per-cent loan, and similarly to pay off the balance of the $4 \frac{1}{2}$ per-cent loan when obtaining the loan at 4 per-cent.

The first point to be decided will be the rate of interest at which the consolidation is to be effected. Let it be assumed that $3 \frac{1}{2}$ per-cent convertible half-yearly is now obtainable on similar security, and that this rate is to be employed in the calculation.

The half-yearly payments in respect of the three loans will be as follows-

$$
\begin{aligned}
& \text { For the } £ 5,000 \text { loan } \frac{5,000}{a \overline{60 \mid}} \text { at } 2 \frac{1}{2} \text { per-cent, or } 161 \cdot 767 \\
& ", \quad £ 2,000 \quad, \frac{2,000}{a_{\overline{60}}}, 2 \frac{21}{4} \quad, \quad, \quad 61.071 \\
& " \quad, £ 4,000 \quad, \frac{4,000}{a_{\overline{60}}},, 2 \\
& \hline
\end{aligned}
$$

Hence (i), if λ be the half-yearly amount of the consolidated annuity for 15 years,

$$
\mathrm{X} . a_{\overline{30}}=161 \cdot 767 a_{\overline{20}}+61 \cdot 071 a_{25}+115 \cdot 072 a_{\overline{35}}
$$

where all the annuities are to be taken at $1 \frac{3}{4}$ per-cent, whence it will
be found that $\mathrm{X}=298: 9$ approximately. And (ii), if n be the number of years in which the consolidated loan would be relcemel by a halfyearly payment of $161 \cdot 767+61 \cdot 071+115 \cdot 072$, or $337 \cdot 910$,

$$
337.910 \times\left(a_{2 n}=161.767 a_{\overline{20}}+61.071 a_{25}+115 \cdot 072 a_{35}\right.
$$

where again all the annuitics are to be taken at $1 \frac{3}{4}$ per-cent, from which it will be found that $n=12 \cdot 815$ nearly. This means, of course, that 25 half-yearly payments of 337.910 would be payable and that a final fractional payment would have to be made at the end of 13 years.

The result obtained in answer to the second part of the question may be defined as the equated term of the three annuitics on the basis of the consolidated annuity being equal to their sum. It will be found to be slightly less than the result obtained by multiplying the several annuities by their outstanding terms and dividing the sum of the products by the consolidated annuity. It may be shown generally that this must always be the case. For let there be any number of annuities of K_{1}, K_{2}, K_{3}, \&e., for $n_{1}, n_{2}, n_{3}, \mathcal{\&}$.., years, and let n be their equated term on the basis specified.

Then

$$
a_{\bar{n}} \times \Sigma \mathrm{K}=\mathrm{K}_{1} a_{\overline{n_{1}}}+\mathrm{K}_{2} a_{n_{2}}+\& c .
$$

$$
\begin{array}{ll}
\therefore & \frac{1-v^{n}}{i} \cdot \leq \mathrm{K}=\mathrm{K}_{1} \cdot \frac{1-v^{n_{1}}}{i}+\mathrm{K}_{2} \frac{1-v^{n_{2}}}{i}+\ldots \\
\therefore & v^{n} \cdot \leq \mathrm{K}=v^{n_{1}} \mathrm{~K}_{1}+v^{n_{2}} \mathrm{~K}_{2}+\ldots
\end{array}
$$

whence it appears that n is the equated time for sums of $\mathrm{K}_{1}, \mathrm{~K}_{2}, \& c$., due $n_{1}, n_{2}, \& c$., years hence.

Now it has been shown in Art. 9 of Chap. II, that the true equated time is < the result obtained by dividing the sum of the products of the amounts due and their respective times by the sum of the amounts. Hence it follows that the equated term of any number of annuities, on the basis of their being replaced by a single annuity equal to their sum, is $<$ the result obtained by dividing the sum of the products of their periodical payments and their respective terms by the sum of the payments. The latter will, however, be a rough approximation to the true result, provided the terms of the given annuities do not differ greatly.

As the problem of the consolidation of loans repayable by annuities often arises in practice in connection with loans raised by local authorities it may be mentioned that the corsolidation of such loans by the method
diseussed above, i.e., by substitution of a single loan repayable by an annuity equal to the sum of the amnuities by whieh the original loans were repayable, would not in general meet the requirements of the Loeal Govermment Board. By regulation issued under the Publie Health Acts Amendment Act, 1903, it is provided that regard shall be had "to the amounts of the several loans and the periods allowed for the payment off of such loans." Now it is obrions that the general equation $\mathrm{K} a \bar{n} \mid=\Sigma \mathrm{K}_{1} a_{\overline{n_{2}}}$ admits of any number of solutions if both K and n be regarded as unknown quantities. In practice, it is considered that the regulations quoted above would be eomplied with by imposing the condition $n \mathrm{~K}=\Sigma n_{1} \mathrm{~K}_{1}$, i.e., by making the total payments in respect of the consolidated loan equal to the total outstanding payments in respeet of the existing loans. On this basis the equated term of the several amuities would be given by the equation

$$
\frac{a_{\bar{n}}}{n}=\frac{\Sigma \mathrm{K}_{1} a_{\overline{n_{1}}}}{\Sigma \mathrm{~K}_{1} n_{1}} .
$$

If λ be written for the right-hand expression (in which all the quantities. are known) the equation beeomes $a_{n}=n \lambda$ whence
and

$$
\begin{aligned}
\iota^{n} & =1-n i \lambda \\
\delta & =-\frac{1}{n} \log _{e}(1-n i \lambda) \\
& =i \lambda+n^{\frac{i}{}{ }^{2} \lambda^{2}} \frac{2}{2}+n^{i^{2}} \frac{i^{3}}{3}+\ldots
\end{aligned}
$$

whence n may be ealeulated to any lesired degree of accuraey by successive approximations. The seeond approximation

$$
n=\frac{6(\delta-i \lambda)}{i \lambda(1 \delta-i \lambda)}
$$

will be found in many eases to give a fair result. But for practieal purposes the appropriate value of n-and thence the corresponding value of K -will of course be obtained by inspection of a table of $\frac{a_{\bar{n}}}{n}$.

CHAPTER VI

On the Determination of the Rate of Interest intolted
in a given Transaction.

1. In the preceding chapters, methods have been investigated for determining the present value or amount of a given scries of payments, or the terms of a given transaction, on the basis of a specified rate of interest. In the present chapter, it is proposed to consider the converse problem of determining at what rate of interest a given series of payments would have a given present value or amount, or, more generally, the rate involved in carrying out any given financial transaction on specified terms. This problem will obviously reduce in all cases to the solution of an equation for i, or j, or δ, as the case may be. For since the successive payments of the given series, or the terms of the given transaction, are assumed to be given, it follows that an equation may be obtained by finding an algebraical expression, on the basis of an assumed rate of interest i, j, or δ, for the present value or amount of the given series, or for some one of the quantities involved in the given transaction, and equating the result to the given present value or amount, or to the known value of the quantity in question. In this equation the assumed rate of interest will be the only unknown quantity, and the problem of determining its value consequently resolves itself into that of solving an equation for a single unknown. The equation will, however, generally be found to be of such a nature that it will be impracticable to obtain an exact solution, and it becomes, therefore, a matter of importance to consider the special problems that most frequently arise in financial transactions, and to investigate convenient methods of cbtaining approximate solutions.
2. At the outset, one consideration of a general nature presents itself. Since an effective rate may be converted into a nominal rate convertible with a given frequency, or vice versa, it follows that it is immaterial whether the rate involved in a given transaction be determined, in the first instance, in the form of an effective rate or in that of a nominal rate. Hence, in any given case it will be most convenient to assume as the rate to be determined a rate convertible with such a frequency as will lead to an equation of the simplest possible form.

For example, suppose it to be required to find at what effective rate an ordinary annuity payable half-yearly for a given number of years will have a given present value. The algebraical expression for the present value of an amnuity payable half-yearly assumes its simplest form in terms of a nominal rate of interest convertible half-yearly. The best course to adopt, therefore, would be to determine, as accurately as may be necessary, the nominal rate payable half-yearly which would produce the given present value, and then to convert that nominal rate into the corresponding effective rate. Similarly, if it were required to find the nominal rate of interest, convertible half-yearly, realized on the purchase of Consols at a given price, the best plan would be to determine the yield, in the first instance, in the form of a nominal rate convertible quarterly-because, the dividends on Consols being payable quarterly, the algebraical expression for the value of Consols per-cent can be most simply written down in terms of a nominal rate convertible quarterlyand then to convert the result into a nominal rate convertible halfyeurly.

In general, the interval of conversion of the assumed rate may be made the same as the interval of payment in the annuity or other transaction under consideration. It will be sufficient, therefore, in most of the investigations that follow, to consider the problem of determining the effective rate involved in an annuity or other transaction under which the interval of payment is a year, for, by substitution of an interval for a year, the resulting formulas will become immediately applicable to the determination of the nominal rate convertible p times a year involved in an annuity or other transaction in which the interval of payment is $\frac{1}{p}$ th of a year.
3. To proceed now to the discussion of the problem. An obvious method of procedure would be to endeavour to find the unknown rate
by successive independent trials. Thus, suppose it were required to find the eflective rate of interest realized on the purchase, at the priee of $135 \cdot 187$ per-cent, of debentures redeemable in 20 years at par and bearing interest at the rate of 5 per-cent payable annually, or, in symbols, to find the value of i satisfying the equation

$$
100 v^{20}+5 a_{\overline{20}}=135 \cdot 187 .
$$

Since the premium of $35 \cdot 187$ has to be written off out of the dividends in 20 years, it is obvious that the rate of interest realized will be very considerably below 5 per-cent. If 3 per-cent and $2 \frac{1}{2}$ per-cent be successively taken as trial rates it will be found, by actual evaluation of the expression $100 v^{20}+5 a_{20}$, that the debentures would be worth 129.755 per-cent at the former rate and 138.973 at the latter. The given price lies between these two values, and it is obvious, therefore, that the required rate lies between $2 \frac{1}{2}$ and 3 per-cent. If now $2 \frac{3}{4}$ per-cent be tried, it will be found that at this rate the value would be $134 \cdot 261$, which shows that $2 \frac{3}{4}$ per-cent is slightly above the required rate. By proceeding to make further trials, it might ultimately be found that the true yield is 2.7 per-cent. But this method, although an admissible process for obtaining a rough idea of the required rate, would elearly be too laborious for general use, and it becomes necessary to investigate a more systematic method of approximation. The best method for general practical purposes is that of interpolation between two or more trial rates giving nearly correct results, but before proceeding to discuss this method it will be convenient to refer briefly to certain other methods which, although not often used in practice, are of some importance in the history of the subject. It will be sufficient to consider the applicability of the various methods to the two representative problems of determining the rate of interest at which a given annuity has a given present value or amount, and of finding the yield on the purehase of a redeemable security at a given price.
4. The first method to which reference may be made is that of successive approximation by direct expansion of the expression for the value or amount of the annuity, or for the value of the redeemable security, in powers of the unknown rate of interest. As a general rule it is impracticable to obtain a reliable approximation by this method without considerable labour owing to the fact that the suecessive terms in the expansion do not diminish rapidly enough to admit of the terms after the first two or three being neglected. The terms may even
increase in value up to a point, in which case it becomes necessary to proceed to an approsimation of a high order to get a good result. Various devices have been suggested with the object of overcoming this difficulty in the case of the annuity-value, but the resulting formulas are too complicated or too limited in applicability to be of any practical use.
5. The objection indicated in the preceding Article to the method of approximation by direct expansion applies equally to the case of an annuity and to the general case of a redeemable security or of a loan repayable by instalments-or, in fact, of any series of payments or financial transaction in which the annuity-element predominates. There is, however, one case, involving the annuity-element to a comparatively small extent, in which the method gives a fairly accurate result. This case-which is of sufficient practical importance to repay special investigation-is that of a debenture or other security bearing a fixed rate of dividend and redeemable in one sum at the expiration of a fixed number of years. Let it be required to find the rate of interest realized on a debenture redeemable in n years, carrying a dividend at the rate of g per annum (payable annually) per unit of its redemption-price, and bought at a premium of k per unit on its redemption-price. Let i be the required rate of interest. Then, by formula (17) of Chapter V,

$$
k=(g-i) a_{n}
$$

$\therefore \quad g-i=k i\left[1-(1+i)^{-n}\right]^{-1}$

$$
\begin{gathered}
\quad=\frac{k}{n}\left[1-\frac{n+1}{2} i+\frac{(n+1)(n+2)}{6} i^{2}-\ldots\right]^{-1} \\
=\frac{k}{n}\left[1+\frac{n+1}{2} i+\frac{n^{2}-1}{12} i^{2}-\frac{n^{2}-1}{24} i^{3}+\ldots\right] .
\end{gathered}
$$

If the terms involving powers of i above the first be neglected, this equation gives, as a first approximation,

$$
\begin{equation*}
i=\frac{g-\frac{k}{n}}{1+\frac{n+1}{2 n} k} \tag{1}
\end{equation*}
$$

In this formula the numerator $=$ the balance of the year's dividend after deduction therefrom of $\frac{1}{n}$ th of the premium paid on purchase, and the denominator

$$
=\frac{1}{n}\left[(1+k)+\left(1+\frac{n-1}{n} k\right)+\left(1+\frac{n-2}{n} k\right)+\ldots+\left(1+\frac{1}{n} \cdot k\right)\right] .
$$

so that the approximation really amounts to taking the rate which the purchaser of the debenture would realize on his average invested capital if he were to write off an equal proportionate part of the premium each year out of the annual dividend and to take the balance of the dividend as interest for the year. This is not a theoretically correct way of dealing with the investment, but it is obvious that, if the term of the debenture were short, it might be expected to give an average yield differing only slightly from the true yield. On inspection of the algebraical expansion from which the approximation is obtained, it will appear that this is the case, for if $\frac{n-1}{6} i$ be small as compared with 1 -that is, in general, if n be not large-the value of the first term neglected, namely, $\frac{n^{2}-1}{12} i^{2}$, will be small as compared with that of $\frac{n+1}{2} i$.

As an example of the use of the formula, let it be required to find, without reference to tables, the approximate yield on a bond, bearing interest at $4 \frac{1}{2}$ per-cent, payable half-yearly, redecmable in 25 years at $112 \frac{1}{2}$, and bought just after payment of the half-yearly dividend, at a price of 120 . Here the half-yearly dividend per unit of the redemption price $=02 ; k=\frac{7 \cdot 5}{112 \cdot 5}$; and $n=50$. Hence, by the formula, the approximate half-yearly yicld $=\frac{.02-\frac{1}{50} \cdot \frac{1}{15}}{1+\frac{51}{100} \cdot \frac{1}{15}}=\frac{28}{1551}=.018053$. The true half-yearly yield, to six places of decimals, is $\cdot 017968$. The approximation is slightly in excess of the true value, and it will be seen, on consideration of the method by which formula (1) was oltained, that the effect of neglecting terms involving powers of i above the first will, in general, be to give to i too large a value
if K is positive-that is, in the case of a bond bought at a premium -and too small a value if π is negative-that is, in the case of a bond bought at a discount. It must, of course, be borne in mind that the application of the formula to redeemable securities bought at a discount will be limited to those cases in which there is a definite contract to redeem at the expiration of a fixed period. A security, redeemable merely at the option of the debtor on or after a fixed date, and bought at a discount on the redemption-price, should be regarded [for a similar reason to that set forth iu Chap. V, Art. 4 (iii)] as a perpetuity of the periodical dividend, and the yield would accordingly be determined by dividing the pericdical dividend by the purchase-price; for example, the effective yield on a debenture bearing interest at 5 per-cent per annum, payable annually, redeemable at 110 on or after a given date at the option of the debtor, and bought at 105 would be $\frac{5}{1 \cdot 05}$ or $4 \cdot 7619 \ldots$ per-cent.
6. It has been pointed out that the impracticability of obtaining a reliable approximation by direct expansion, in powers of i, is due to the fact that the terms in the expansion do not diminish rapidly enough to admit of the terms after the first two or three being neglected. Although the successive powers of i form a rapidly-decreasing series of quantities, the coefficients by which they are multiplied may increase for a certain number of terms with equal or even greater rapidity, so that the early terms in the expansion will not necessarily exhibit rapid convergency. It is obvious, however, that if the unknown quantity i could be replaced, in the expansion, by some very much smaller unknown quantity, without any corresponding increase in the coefficients, the series would be rendered much more rapidly convergent, and the error resulting from neglecting the terms involving the higher powers of the unknown quantity would be correspondingly diminished. This is the expedient adopted in a second method of approximation, which-with the aid. of interest tables-gives good results with comparatively little labour. It will usually be found that the coefficients required in the approximation assume such a form that they can be easily evaluated with the aid of interest tables. The process will be exemplified by the following. investigations of the cases of an annuity and a loan repayable by instalments.
7. Consider, first, the case of the annuity. Let a be the given present value of an annuity of 1 per annum payable annually for n years, let i be the unknown rate of interest, and suppose that, on reference to a table of the present values of an annuity at various rates of interest, it is found that at rate $i^{\prime}, a_{n}=a^{\prime}$, which differs by only a small quantity from the given present value a. Assume that $i=i^{\prime}+\rho$, where ρ will be a small quantity-positive or negative-relatively to i^{\prime}. Then

$$
\begin{aligned}
a & =\frac{1-v^{n}}{i}=\frac{1-\left(1+i^{\prime}+\rho\right)^{-n}}{i^{\prime}+\rho} \\
& =\frac{1}{i^{\prime}}\left[1-v^{\prime n}\left(1+\rho v^{\prime}\right)^{-n}\right]\left[1+\frac{\rho}{i^{\prime}}\right]^{-1} \\
& =\frac{1}{i^{\prime}}\left[1-v^{\prime n}+n \rho v^{\prime n+1}-\frac{n(n+1)}{2} \rho^{2} v^{\prime n+2}+\ldots\right]\left[1-\frac{\rho}{i^{\prime}}+\frac{\rho^{2}}{i^{\prime \prime 2}}-\ldots\right] \\
& =a^{\prime}-\frac{\rho}{i^{\prime}}\left(a^{\prime}-n v^{\prime n+1}\right)+\text { terms involving higher powers of } \rho .
\end{aligned}
$$

Hence, as a first approximation,

$$
\begin{equation*}
\rho=i^{\prime} \frac{a^{\prime}-a}{a^{\prime}-n v^{\prime} n+1} \quad \text { and } \quad i=i^{\prime}+i^{\prime} \frac{a^{\prime}-a}{a^{\prime}-n v^{\prime n+1}} \quad . \quad . \tag{2}
\end{equation*}
$$

Similarly, if the amount of the annuity were given as s, and the value of $s_{n}^{-\mid}$at rate i^{\prime} were found to be s^{\prime}, a quantity differing only slightly from s, the resulting first approximation would be

$$
\begin{equation*}
i=i^{\prime}+i^{\prime} \frac{s^{\prime}-s}{s^{\prime}-n\left(1+i^{\prime}\right)^{n-1}} . \tag{3}
\end{equation*}
$$

A second approximation may be obtained in each case by retaining the term involving ρ^{2} and by substituting for ρ^{2} in that term $\rho i^{\prime} \frac{a^{\prime}-a}{a^{\prime}-n v^{\prime} n+1}$ in the one case or $\rho i^{\prime} \frac{s^{\prime}-s}{s^{\prime}-n\left(1+i^{\prime}\right)^{n-1}}$ in the other. But a better approximation would, in general, be given by repeating the original process, that is to say, by putting $i=i^{\prime \prime}+\rho^{\prime}$, where $i^{\prime \prime}$ is the first approximation to i, and finding a first approximation to ρ^{\prime} in the same way as for ρ. For example, in the case of the present value of the annuity, let $i^{\prime}+i^{\prime} \frac{a^{\prime}-a}{a^{\prime}-n v^{\prime n+1}}=i^{\prime \prime}$, and let the value of a_{n}^{-}at rate $i^{\prime \prime}$ be $a^{\prime \prime}$.

Then for a more accurate approximation,

$$
\begin{equation*}
i=i^{\prime \prime}+i^{\prime \prime} \frac{a^{\prime \prime}-a}{a^{\prime \prime}-n v^{\prime \prime} n+1} \tag{1}
\end{equation*}
$$

To evaluate this expression it would merely be necessary to calculate the values of $a^{\prime \prime}$ and $v^{\prime \prime n+1}$ by means of logarithms. The process may obviously be repeated until any desired degree of accuraey has been attained.
8. An alternative method of procedure to that by which formula (2) was deduced would be to expand $\frac{1}{a_{\bar{n}!}}$ instead of $a_{\bar{n}}$. Then

$$
\begin{aligned}
\frac{1}{a} & \left.=\frac{i}{1-v^{n}}=\frac{i^{\prime}+\rho}{1-\left(1+\frac{\left.i^{\prime}+\rho\right)^{-n}}{1-v^{\prime n}+n \rho v^{\prime \prime n+1}-\ldots}\right.} \begin{array}{rl}
& =\frac{1}{a^{\prime}}\left(1+\frac{\rho}{i^{\prime}}\right)\left(1-\frac{n v^{\prime n+1}}{a^{\prime}} \cdot \frac{\rho}{i^{\prime}}+\ldots\right) \\
& =\frac{1}{a^{\prime}}\left[1+\frac{\rho}{i^{\prime}}\left(1-\frac{n v^{\prime} n+1}{a^{\prime}}\right)-\ldots\right]
\end{array}, l\right)
\end{aligned}
$$

whence, as a first approximation,

$$
\begin{equation*}
i=i^{\prime}+i^{\prime} \frac{\frac{1}{a}-\frac{1}{a^{\prime}}}{\frac{1}{a^{\prime}}-\frac{n e^{\prime n+1}}{a^{\prime 2}}} \quad . \quad . \quad . \quad . \tag{5}
\end{equation*}
$$

It will be found that, as a rule, closer approximations can be obtained by working with the reciprocal of the annuity-value instead of with the annuity-value itself.
9. In order to test the accuracy of the formulas given in the two preceding Articles, take as data $n=30$, and $a=20$. On reference to ' Table IV it will be found that $a_{30}=20 \cdot 9303$ at $2 \frac{1}{2}$ per-cent and $19 \cdot 6004$ at 3 per-cent. 'Tlie latter value is the nearer to the given present-value, and it will, therefore, be proper to assume that $i=03+\rho$, where ρ will be a small negative quantity. Also, by Table II, v^{31} at 3 per-cent $=39999$.

Formula (2) grives

$$
i=\cdot 03-\frac{\cdot 3996 \times \cdot 03}{19 \cdot 6004-11 \cdot 9997}=\cdot 028423
$$

Again, $\frac{1}{a}=\cdot 05$, and by 'Table $V \frac{1}{a_{\overline{301}}}$ at 3 per-cent $=051 \cup 19$, so that formula (5) gives

$$
i=\cdot 03-\frac{.001019 \times \cdot 03}{051019(1-11.9997 \times 0.51019)}=\cdot 0284.55
$$

If 025455 be taken as a new trial rate, it will be found that at this rate $\frac{1}{a_{30 \mid}}=\cdot 050006$ and $v^{31}=41904$. Hence, by the corresponding formula to (t),

$$
i=\cdot 028455-\frac{.000006 \times \cdot 028455}{\cdot 050006(1-12 \cdot 5712 \times \cdot 050006)}=028416
$$

The true value of i correct to six places of decimals is 025446 . It will be seen, therefore, that formula (5) gives a better result than formula (2), and that the second application of the former gives the reguired rate accurately to the sixth place of decimals.

In connection with all such results as those just obtained, it should, of course, be borne in mind that their accuracy to the last place of decimals must not be assumed without examination of the error due to the limited number of decimal places in the tabulated quantities upon which they are based. The fraction at the foot of page 108 , for example, should strictly be written $\frac{(\cdot 3996 \pm \cdot 00005) \times \cdot 03}{19 \cdot 6004 \pm \cdot 00005-(11 \cdot 9997 \pm \cdot 00015)}$. In this particular case, if the extreme values are taken, it will be found that the result (to the sixth place) remains unaltered. But if a similar process be applied to the expression given by formula (5) it will be found that the data only justify the conclusion that the result lies between 028454 and 025456 .
10. In the case of a loan repayable by instalments, the method may be applied in precisely the same way as in the case of the annuity. Let it be required to find the effective rate of interest realized on the purchase, at the price of A, of a loan redeemable by instalments of the total amount of C , and bearing an annual dividend at the rate g reckoned on C , let the suecessive instalments be $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, \&c., repayable certainly on the expiration of n_{1}, n_{2}, n_{3}, \&c., years respectively; let i^{\prime} be a rate (found by trial) which brings out a price not differing greatly from A, and let $i=i^{\prime}+\rho$, where ρ is unknown; also, as in Art. 24 of Chapter V , let $\mathrm{K}=\mathrm{C}_{1} v^{n_{2}}+\mathrm{C}_{2} v^{n_{2}}+\ldots$. Then

$$
\begin{aligned}
& \Lambda= \mathrm{K}+\frac{!\prime}{i}(\mathrm{C}-\mathrm{K}) \\
&= {\left[\mathrm{C}_{1}\left(1+i^{\prime}+\rho\right)^{-n_{1}}+\ldots\right]+\frac{g}{i^{\prime}}\left[1+\frac{\rho}{i^{\prime}}\right]^{-1}\left[\mathrm{C}-\mathrm{C}_{1}\left(1+i^{\prime}+\rho\right)^{-n_{1}}-\ldots\right] } \\
&= {\left[\mathrm{C}_{1} v^{\prime} n_{1}-n_{1} \rho \mathrm{C}_{1} v^{\prime} n_{1}+1+\ldots\right]+\frac{g}{i^{\prime}}\left[1-\frac{\rho}{i^{\prime}}\right]\left[\mathrm{C}-\mathrm{C}_{1} v^{\prime} n_{1}+n_{1} \rho \mathrm{C}_{1} v^{\prime} n_{1}+1 \ldots\right] } \\
& \quad+\text { terms involving higher powers of } \rho \\
&= \mathrm{K}^{\prime}+ \\
& \frac{g}{i^{\prime}}\left[\mathrm{C}-\mathrm{K}^{\prime}\right]-\frac{\rho}{i^{\prime}}\left[\frac{g}{i^{\prime}}\left(\mathrm{C}-\mathrm{K}^{\prime}\right)+\left(i^{\prime}-g\right)\left(n_{1} \mathrm{C}_{1} v^{\prime} n_{1}+1+\ldots\right)\right] \\
&+ \text { terms involving higher powers of } \rho \\
&= \mathrm{A}^{\prime}-\frac{\rho}{i^{\prime}}\left[\mathrm{A}^{\prime}-\mathrm{K}^{\prime}+\left(i^{\prime}-g\right) \Sigma n_{1} \mathrm{C}_{1} v^{\prime} n_{1}+1\right] \\
&+ \text { terms involving higher powers of } \rho .
\end{aligned}
$$

Hence, as a first approximation,
and

$$
\begin{align*}
& \rho=i^{\prime} \frac{\mathrm{A}^{\prime}-\mathrm{A}}{\mathrm{~A}^{\prime}-\mathrm{K}^{\prime}+\left(i^{\prime}-g\right) \Sigma n_{1} \mathrm{C}_{1} v^{\prime n_{1}+1}} \\
& i=i^{\prime}+i^{\prime} \frac{\mathrm{A}^{\prime}-\mathrm{A}}{\mathrm{~A}^{\prime}-\mathrm{K}^{\prime}+\left(i^{\prime}-g\right) \Sigma n_{1} \mathrm{C}_{1} v^{\prime n_{2}+1}} . \tag{i}
\end{align*}
$$

where A^{\prime} and K^{\prime} respectively denote the value of the loan, and the value of the capital repayable, at the trial rate i^{\prime}. As applied to a debenture repayable in one sum, the formula reduces to

$$
\begin{equation*}
i=i^{\prime}+i^{\prime} \frac{\mathrm{A}^{\prime}-\mathrm{A}}{\mathrm{~A}^{\prime}-\mathrm{K}^{\prime}+\left(i^{\prime}-g\right) n \mathrm{C} v^{\prime} n+1} \tag{7}
\end{equation*}
$$

As an example of the use of this formula, let it be required to find, as in Art. 5 , the approximate yield on a $4 \frac{1}{2}$ per-cent debenture, redeemable in 25 years at $112 \frac{1}{2}$, and bought just after payment of the half-yearly dividend at 120 . If 0175 be taken as a trial half-yearly yield, the values of the various quantities occurring in the formula will be as follows:

$$
\begin{aligned}
i^{\prime} & =0175 ; \quad \mathrm{A}^{\prime}=112 \frac{1}{2} v^{\prime 50}+2 \frac{1}{4} a^{\prime} \overline{50}=121 \cdot \mathrm{~S} 21 \\
\mathrm{~A} & =120 ; \quad \mathrm{K}^{\prime}=112 \frac{1}{2} v^{\prime 50}=4.7 \cdot 253 \\
i^{\prime}-g & =0175-02=-.0025 ; \quad \text { and } n \mathrm{C} v^{\prime n+1}=2329 \cdot 0 \\
\text { Hence } \quad i & =0175+\cdot 0175 \frac{1 \cdot 821}{65 \cdot 763}=017963
\end{aligned}
$$

This result differs by 5 only in the sixth place from the true value, and by repeating the process- 017963 being taken as a new trial rateit would, of course, be casy to obtain a very much closer approximation.
11. If the trial rate i^{\prime} be taken $=g$, then $\mathrm{A}^{\prime}=\mathrm{C} ; i^{\prime}-g=0$; and formulas (6) and (7) reduce to the simple form

$$
\begin{equation*}
i=g+g \frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}-\mathrm{K}^{\prime}} \cdot . \cdot \ldots . . \tag{8}
\end{equation*}
$$

where K^{\prime} is to be calculated at rate g. This is a very convenient formula for a first approximation, as it entails the calculation of only one quantity, namely, K^{\prime}; but it has not, of course, the generality of formulas (6) and (7). The value of formulas (6) and (7) consists in the fact that they afford a means of obtaining an approximation to any desired degree of accuracy, since the rate obtained by any particular application of the formula may be used as a new trial rate for the purpose of obtaining a closer approximation.

Formula (S), applied to the ease of the debenture taken as an example in the last preceding Article, gives

$$
\begin{aligned}
& i=\cdot 02-\cdot 02 \frac{7 \cdot 5}{112 \cdot 5-41 \cdot 797} \\
& =\cdot 02-\cdot 0 \cup 2122=\cdot 017878
\end{aligned}
$$

which is not quite so good a result as that obtained, without the assistance of Interest Tables, by formula (1)
12. A good approximation to the force of interest-and thence to the effective or other rate-at which $s_{\bar{n} \mid}$ or $a_{\bar{n} \mid}$ has a given value, may be obtained by means of tables of $\log \frac{e^{x}-1}{x}$ and $\log \frac{x}{1-e^{-x}}$. For s_{n} and $a_{\bar{n} 1}$ are very nearly equal to $\bar{s}_{\overline{n-i}}+\frac{1}{2}$ and $\bar{a}_{n+3 \mid}-\frac{1}{2}$ respectively, ${ }^{*}$ that is, to $\left(n-\frac{1}{2}\right) \frac{e^{\left(n-\frac{1}{2}\right) \delta}-1}{\left(n-\frac{1}{2}\right) \delta}+\frac{1}{2}$ and $\left(n+\frac{1}{2}\right) \frac{1-e^{-\left(n+\frac{1}{2}\right) \delta}}{\left(n+\frac{1}{2}\right) \delta}-\frac{1}{2}$. Hence, $\left(n-\frac{1}{2}\right) \delta$ in the one case, or $\left(n+\frac{1}{2}\right) \delta$ in the other, may be obtained approximately by entering the tables inversely with $\log \frac{s_{\bar{n}}-\frac{1}{2}}{n-\frac{1}{2}}$ or $\log \frac{n+\frac{1}{2}}{u_{\bar{n}}+\frac{1}{2}}$. It bas been

[^1]shown by Dr. J. F. Steffensen and Mr. N. P. Bertelsen (Nyt Tidsskrift for Mathematik) that this gives sufficiently accurate results for most purposes, and that very close approximations ean be obtained by a method similar to that of Art. 7 .
13. It remains now to consider the practical method of approximation mentioned in Art. 3, namely, the method of approximation by interpolation between two or more trial rates giving nearly correct results. For interpolations based on more than two rates it is convenient to use Finite Differences or some gencral interpolation formula. In practice, however, it is usually sufficient to employ what is technically called a first-difference-interpolation-that is, to interpolate between two trial rates only. An interpolation of this nature-which alone will be considered here-rests merely upon the simple assumption that the differences between the values of an interest-function at various rates of interest are directly proportional to the differences in the corresponding rates. In the case of a function involving in its algebraical expression only the first power of the rate of interest this assumption is strictly correct. For example:-

The amount of 100 in a year at 2	per-cent is 102				
$"$	$"$	$"$	$2 \frac{1}{2}$	$"$	$102 \cdot 5$
$"$	$"$	$"$	$3 \frac{1}{8}$	$"$	$103 \cdot 125$
$"$	$"$	$"$	$4 \frac{1}{2}$	$"$	1045

and it will be seen, on inspection, that the difference between any of two of these amounts is directly proportional to the difference in the corresponding rates; for instance, the difference of 625 , between the amounts at $3 \frac{1}{8}$ and $2 \frac{1}{2}$ per-cent, bears the same ratio to the difference of $2 \cdot 5$ between the amounts at $4 \frac{1}{2}$ and 2 per-cent as the difference between $3 \frac{1}{5}$ and $2 \frac{1}{2}$ per-cent bears to the difference between $4 \frac{1}{2}$ and 2 per-cent. Hence, if it were required to find the rate i at which 100 would amount in a year to 1029 , and it were given that at 2 and $4 \frac{2}{2}$ per-cent 100 would amount to 102 and 1045 respectively, the result obtaince by the first-difference interpolation formula,

$$
\frac{i-\cdot 02}{\cdot 045-.02}=\frac{102 \cdot 9-102}{104 \cdot 5-102}
$$

(which, on reduction, gives $i=\cdot 029$), would be strictly eorrect.

But most interest functions are of a much more complex character, and in such eases the assumption upon which the method of first difference interpolation rests is only approximately correct. In general, the smaller the differences between the trial rates and the true rate the more nearly accurate will be the resulting approximation ; for example, if it were found that a given annuity-value fell between the values at $2 \frac{2}{2}$ and $2 \frac{5}{3}$ per-cent, a better result would be obtained by interpolating between these near rates than by interpolating between 2 and 3 per-cent. In gencral, also, an interpolation-that is, an approximation by reference to two trial rates of which one is greater and the other less than the true rate-will give a better result than an exterpolation-that is, an approximation based upon two trial rates of which both are greater or both less than the true rate.
14. The application of the method of tirst difference interpolation presents no analytical difficulties, but it will be convenient to deduce, as in the ease of the method of approximation diseussed in Arts. 6-11, the formulas appropriate to the annuity and the redeemable security.
15. In the case of the annuity, suppose it to have been ascertainedby reference to tables or by actual trial-that the given present value a of an n-year annuity lies between a^{\prime} aud $a^{\prime \prime}$, the respective values of an n-year ammity at rates i^{\prime} and $i^{\prime \prime}$. Then, on the assumption involved in the method of first-difference interpolation, it follows that, approximately,
whence

$$
\begin{gather*}
\frac{i-i^{\prime}}{i^{\prime \prime}-i^{\prime}}=\frac{a-a^{\prime}}{a^{\prime \prime}-a^{\prime}} \\
i=i^{\prime}+\frac{a-a^{\prime}}{a^{\prime \prime}-a^{\prime}}\left(i^{\prime \prime}-i^{\prime}\right) \tag{9}
\end{gather*}
$$

Here, again, as in Art. S, the reciprocals of the annuity-values might be used, in which case the approximate expression for i would take the form

$$
\begin{equation*}
i=i^{\prime}+\frac{\frac{1}{u}-\frac{1}{a^{\prime}}}{\frac{1}{a^{\prime \prime}}-\frac{1}{a^{\prime}}}\left(i^{\prime \prime}-i^{\prime}\right) \tag{10}
\end{equation*}
$$

To test these formulas, let $a=20$ and $n=30$, as before. On reference to Tables $I V$ and V it will be found that the values of a_{301} and $\frac{1}{a_{301}}$ are 20.9303 and $\cdot 047775$ respectively at $2 \frac{1}{2}$ per-cent, and 196004 and

- 051019 respectively at 3 per-cent. Hence, by formula (9),

$$
i=03-\frac{3996}{13299} \times \cdot 005=\cdot 028498
$$

and by formula (10),

$$
i=\cdot 03-\frac{1019}{3241} \times \cdot 005=\cdot 025428
$$

These results are not so good as those given by formulas (2) and (5), but then it must be remembered that the difference between $2 \frac{1}{2}$ per-cent and 3 per-cent-the rates on which the interpolation is based-is comparatively large. In practice, more extensive tables than those at the end of this book would be employed, and a much more accurate result could then be obtained. For example, a first difference interpolation by formula (10) between 2_{4}^{3} per-cent and $2 \frac{7}{8}$ per-cent would give $i=028445$, which differs from the true value by only 1 in the last place. If no other tables except the $2 \frac{1}{2}$ and 3 per-cent were available a more accurate approximation could of course be obtained by calculating $a_{\overline{30}}$ (by logarithms) at the rate 02543 and then interpolating again by formula (10) between this rate and 03 .
16. In the case of a redeemable security, several different methods of interpolation may be followed.
(i) Let A^{\prime} and $A^{\prime \prime}$ be the present values of the security to pay i^{\prime} and $i^{\prime \prime}$ respectively, these values being found by the formulas

$$
\mathrm{A}^{\prime}=\mathrm{K}^{\prime}+\frac{g}{i^{\prime}}\left(\mathrm{C}-\mathrm{K}^{\prime}\right) \quad \text { and } \quad \mathrm{A}^{\prime \prime}=\mathrm{K}^{\prime \prime}+\frac{g}{i^{\prime \prime}}\left(\mathrm{C}-\mathrm{K}^{\prime \prime}\right)
$$

Then, A being the given present value of the security and i being the true yield which it is required to determine, it follows, as in the case of the annuity, that

$$
i=i^{\prime}+\frac{\mathrm{A}-\mathrm{A}^{\prime}}{\mathrm{A}^{\prime \prime}-\mathrm{A}^{\prime}}\left(i^{\prime \prime}-i^{\prime}\right) \text { approximately }
$$

If g-the rate of dividend (calculated on C) payable on the security -be taken as the second trial rate in place of $i^{\prime \prime}$, then, since $A^{\prime \prime}$ becomes $=C$, and $A^{\prime}=K^{\prime}+\frac{q}{i^{\prime}}\left(C-I^{\prime \prime}\right)$, the formula reduces to the form

$$
i=i^{\prime}+\frac{\mathrm{A}-\mathrm{K}^{\prime}-\frac{g}{i^{\prime}}\left(\mathrm{C}-\mathrm{K}^{\prime \prime}\right)}{\mathrm{C}-\mathrm{K}^{\prime}-\frac{g}{i^{\prime}}\left(\mathrm{C}-\mathrm{K}^{\prime}\right)}\left(g-i^{\prime}\right)
$$

$$
\begin{equation*}
=g+i^{\prime} \frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}-\mathrm{K}^{\prime \prime}} \tag{11}
\end{equation*}
$$

a very simple and convenient approximate formula, involving the calculation of only one quantity, namely, K^{\prime}, that is, the present value of the capital at rate i^{\prime}.

The reciprocals of A, A^{\prime}, and $A^{\prime \prime}$ may obviously be substituted for $\mathrm{A}, \mathrm{A}^{\prime}$, and $\mathrm{A}^{\prime \prime}$ in the foregoing argument. The interpolation between i^{\prime} and $i^{\prime \prime}$ then gives

$$
i=i^{\prime}+\frac{\frac{1}{\mathrm{~A}}-\frac{1}{\mathrm{~A}^{\prime}}}{\frac{1}{\mathrm{~A}^{\prime \prime}}-\frac{1}{\mathrm{~A}^{\prime}}}\left(i^{\prime \prime}-i^{\prime}\right) \text { approximately }
$$

which reduces, if g be taken as the sceond trial rate in place of $i^{\prime \prime}$, to

$$
i=g+i^{\prime} \frac{\frac{\mathrm{C}-\mathrm{A}}{\mathrm{~A}}}{\frac{\mathrm{C}-\mathrm{K}^{\prime}}{\mathrm{A}^{\prime}}}
$$

In the case of a security redcemable in n years at par and bought at a premium of k per unit, formulas (11) and (12) beeome
and

$$
\begin{aligned}
& i=g-\frac{k}{a^{\prime} \bar{n}} \\
& i=\frac{g-\frac{k}{s_{\bar{n}}^{\prime}}}{1+k}
\end{aligned}
$$

respectively. The second expression gives the common rule for finding the vield on a redeemable security bought at a premium:-Deduct from the periodical dividend the sinking fund whieh would provide for the replacement of the premium at the date of redemption, and divide the remainder by the price. In the application of this rule the rate of interest employed in calculating the sinking fund should, of course, be a rate differing not greatly from the actual yield on the seeurity.
(ii) By a simple transformation, the equation $\mathrm{A}=\mathrm{K}+\frac{g}{i}(\mathrm{C}-\mathrm{K})$ may be written in the form $i=g \frac{\mathrm{C}-\mathrm{K}}{\mathrm{A}-\mathrm{K}}$. Hence, if it were possible to correctly guess the unknown rate i, the result of calculating K and
inserting its value in the expression $g \frac{\mathrm{C}-\mathrm{K}}{\mathrm{A}-\mathrm{K}}$ (in which all the remaining quantitics g, C, and A, are known), should be to exactly reproduce the rate employed in the calculation. Suppose now the value of $g \frac{\mathrm{C}-\mathrm{K}}{\mathrm{A}-\mathrm{K}}$ to be sucecssively caleulated at the trial rates i^{\prime} and $i^{\prime \prime}$, and the respective results to be I^{\prime} and $\mathrm{I}^{\prime \prime}$. If the true unknown rate i had been employed, the result, as explained above, wumh have been i. Hence, by interpolation, an approximate value of i is given by the equation

$$
\frac{i-i^{\prime}}{i^{\prime \prime}-i^{\prime}}=\frac{i-\mathrm{I}^{\prime}}{\mathrm{I}^{\prime \prime}-\mathrm{I}^{\prime}}
$$

whence

$$
\begin{align*}
i & =\frac{i^{\prime}\left(\mathrm{I}^{\prime \prime}-\mathrm{I}^{\prime}\right)-\mathrm{I}^{\prime}\left(i^{\prime \prime}-i^{\prime}\right)}{\mathrm{I}^{\prime \prime}-\mathrm{I}^{\prime}-i^{\prime \prime}+i^{\prime}} \\
& =\frac{i^{\prime \prime} \mathrm{I}^{\prime \prime}-\mathrm{I}^{\prime} i^{\prime \prime}}{\mathrm{I}^{\prime \prime}-\mathrm{I}^{\prime}-i^{\prime \prime}+i^{\prime}} . \tag{1:1}
\end{align*}
$$

(iii) If the original equation be written in the form $g=i \frac{A-K}{C-K}$, another approximation to the value of i may be obtained by a precisely similar process to that followed in (ii) -that is, by calculating the values of $i^{\prime} \frac{\mathrm{A}-\mathrm{K}^{\prime}}{\mathrm{C}-\mathrm{K}^{\prime}}$ and $i^{\prime \prime} \frac{\mathrm{A}-\mathrm{K}^{\prime \prime}}{\mathrm{C}-\mathrm{K}^{\prime \prime}}$ at the trial rates i^{\prime} and $i^{\prime \prime}$ respectively, and interpolating between the results.

Suppose that i^{\prime} gives as a result G^{\prime},

$$
\text { and "} i^{\prime \prime} \quad, \quad, \quad \mathrm{a}^{\prime \prime} \text {, }
$$

The true rate i would give , g.
Hence, approximately,

$$
\begin{align*}
\frac{i-i^{\prime}}{i^{\prime \prime}-i^{\prime}} & =\frac{g-\mathrm{G}^{\prime}}{\mathrm{G}^{\prime \prime}-\mathrm{G}^{\prime}} \\
i & =\frac{i^{\prime} \mathrm{G}^{\prime \prime}-\mathrm{G}^{\prime} i^{\prime \prime}+g\left(i^{\prime \prime}-i^{\prime}\right)}{\mathrm{G}^{\prime \prime}-\mathrm{G}^{\prime}} . \tag{14}
\end{align*}
$$

whence
17. To test the accuracy of the various approximations obtained in the preceding article, it will be useful to take, as before, the example of
a $4 \frac{1}{2}$ per-cent debenture, redeemable in 95 years at 1121 , and bought just after the payment of a half-yearly dividend for 120 , so that $g=02 ; \quad C=1125 ;$ and $A=120$. 'I'he value of the debenture to yield : per-cent half-yearly is of course $112 \cdot 5$, and its value to yield 13 per-cent-already caleulated in Art. 10 -is $121 \cdot 521$. The given price lies between these two values, so that $i^{\prime}=01.75$ and $i^{\prime \prime}=02$ will be suitable rates for purposes of interpolation. Then, since by Table II $K=47 \cdot 053$ and $\mathrm{K}^{\prime \prime}=41 \cdot 797$,

$$
\begin{aligned}
& I^{\prime}=g \frac{\mathrm{C}-\mathrm{K}^{\prime \prime}}{\mathrm{A}-\mathrm{K}^{\prime \prime}}=\cdot 02 \quad \times_{72 \cdot 7.7}^{65 \cdot 247}=\cdot 01793 \mathrm{~S} \\
& \mathrm{I}^{\prime \prime}=g \frac{\mathrm{C}-\mathrm{K}^{\prime \prime}}{\mathrm{A}-\mathrm{K}^{\prime \prime}}=\cdot 02 \times \frac{70703}{75 \cdot 0.3}=\cdot 018082 \\
& \mathrm{G}^{\prime}=i^{\prime} \frac{\mathrm{A}-\mathrm{K}^{\prime}}{\mathrm{C}-\mathrm{K}^{\prime}}=\cdot 0175 \times \frac{72 \cdot 747}{65.247}=\cdot 019512 \\
& \mathrm{G}^{\prime \prime}=i^{\prime \prime \prime} \frac{\mathrm{A}-\mathrm{K}^{\prime \prime}}{\mathrm{C}-\mathrm{K}^{\prime \prime}}=\cdot 02 \quad \times \frac{78 \cdot 203}{70 \cdot 703}=\cdot 022121
\end{aligned}
$$

Hence, formula (11) gives $i=02-0175 \times \frac{7 \cdot 5}{65 \cdot 247}=\cdot 017988$

$$
\begin{aligned}
& " \quad, \quad(12) \quad, \quad i=\cdot 02-\cdot 0175 \times \frac{7 \cdot 5 \times 121 \cdot 821}{65 \cdot 247 \times 120}=\cdot 017957 \\
& \because \quad, \quad(13) \quad, \quad i=\frac{\cdot 000042325}{002356}=\cdot 017965 \\
& " \quad, \quad(14) \quad, \quad i=\frac{.0000468775}{\cdot 002609}=\cdot 01796 \mathrm{~S}
\end{aligned}
$$

It will be observed that in this case formula (14) gives the true value of i, but this is an accidental result of the fact that only a small number of places of decimals have been retained in the calculations. For most practieal purposes any one of the formulas will give a sufticiently aecurate result, but it will generally be advisable to re-calculate the value of the security at the rate obtained by the first approximation, whether with the object merely of checking the result, or in order to obtain a scond and closer approximation. In practice it will nsually be found more couvenient to work with the original equations from which the approximate formulas for i have been obtained than to use the formulas themselves. For example, the relation $\frac{i-i^{\prime}}{i^{\prime \prime}-i^{\prime}}=\frac{i-1^{\prime}}{1^{\prime \prime}-1^{\prime}}$ is casier to remember than formula (13), inasmuch as
it follows at once from the principle upon which the method is based; and it is also a better working formula, since it involves the differences instead of the products ci the quantities, and consequently entails less arithmetic.
18. In the foregoing Articles various methods of approximation have been successively discussed, and the resulting formulas applicable to the amnity and the redeemable seeurity have been deduced incidentally. In the Table on the following page the formulas are brought together so that the results can be compared. The several methorts diseussed in Artieles 4-5, 6-11, and 13-17 are referred to, for convenience, as methods I, II, and III respectively. It must be understood that the numerieal values of i are given principally for purposes of comparison. Better absolute values could be obtained, in the applieation of methods II and III, by using Tables giving the values of the requisite functions for smaller differences of i.
19. It has been shown in Chapter V, Art. 23, that the incidence of income-tax may make a material difference in the value of a redeemable security bought to yield a rate differing from the rate of dividend. Conversely it may materially affect the yield on a security bought at a premium or a discount. In order to allow for income-tax in determining the yield, all that is necessary is to substitute $g(1-t)$ for g, where t is the rate of tax, and to remember that the yield then obtained will be the net yield after deduction of income-tax. For example, if allowance be made for income-tax, formula (1) becomes

$$
i(1-t)=\frac{g(1-t)-\frac{k}{n}}{1+\frac{n+1}{2 n} k} \text { or } i=\frac{g-\frac{k}{n(1-t)}}{1+\frac{n+1}{2 n} k}
$$

Similarly, formula (14) becomes
or

$$
\begin{aligned}
i(1-t) & =\frac{i^{\prime} \mathrm{G}^{\prime \prime}-\mathrm{G}^{\prime} i^{\prime \prime}+g(1-t)\left(i^{\prime \prime}-i^{\prime}\right)}{\mathrm{G}^{\prime \prime}-\mathrm{G}^{\prime}} \\
i & =\frac{(1-t)^{-1}\left(i^{\prime} \mathrm{G}^{\prime \prime}-\mathrm{G}^{\prime} i^{\prime \prime}\right)+g\left(i^{\prime \prime}-i^{\prime}\right)}{\mathrm{G}^{\prime \prime}-\mathrm{G}^{\prime}}
\end{aligned}
$$

On application of these modified formulas to the example already used for comparative purposes, it will be found that in this particular case allowance for ineome-tax at the rate of 1 s . in the $£$ would reduce the yield by rather over $3 d$. per annum.

Approximate Formulas for the Rate of Interest.

Note. - Any of the approximate rates obtained by the formulas may be used as
a new trial rate for the purpose of obtaining a more accurate approximation.
20. It will be convenient to conclude this chapter with a few illustrative examples:
(a) A debenture stock, releemable at par on 1 October 1937, and bearing intertst at 6 per-cent per ammm, payalle half-yearly on 1 Aprii and 1 October, is quoted on 1 August 1915 at 117 . What rate of interest does it yicld?

The corresponding quotation on 1 October 1915 after payment of the half-year's interest then due, would obviously be about 115 (i.e., $117+$ two months' interest -3). Hence, as a rough guide to the
yield, formula (1) gives $i=\frac{3-\frac{15}{44}}{100+\frac{45}{55} \times 15}=0247 \ldots$ from which it
appears that $2 \frac{1}{2}$ and $2 \frac{1}{4}$ per-cent would be suitable trial rates to cmploy for the purpose of ohtaining a more accurate approximation.

Now the price of the stock per-cent on 1 August 1915 to yield the half-yearly eflective rate i would be

$$
v_{3}^{3}\left[100 v^{44}+3\left(1+a_{44}\right)\right]
$$

and the values of this expression at $2 \frac{1}{2}$ and $2 \frac{1}{4}$ per-cent will be found to be 115299 and 122.896 respectively. Hence, the approximate half-yearly yield $=025-\frac{1.701}{7597} \times 002.5=02444$. The required yield is therefore, approximately, £ٔ. 17 s .9 d . per-cent, convertible halfyearly.

In practice, it is usual to estimate the c.x interest price as at the next following dividend date by simply deducting acerued dividend from the quotation, and to calculate the yield on the net price so obtained. Thus, in the case under consideration, the net price, after deduction of four months' accrued dividend, would be 115, which would give as at 1 October 1915, a yield of $£ 4.17 \mathrm{~s}$. 7 d . per-cent, convertible half-yeally. By this method the proportion of the dividend from the date of purchase to the next following dividend date is allocated wholly to interest, instead of partly to interest and partly to reduction of principal, and, consequently, the yield for the remaining term of the investment is slightly reduced.

In the foregoing solution no allowance has been made for the fact that the whole of the dividend would be subject to income tax. This fact could, however, be taken into account by a very trifling
modification of the work. For let the rate of tax be $1 s$. in the $£$. Then the price of the stock per-cent to yield the net balf-yearly rate i after deduction of tax would be $v \leq\left[100 c^{34}+2 \cdot b 5\left(1+a_{44}\right)\right]$, from which it will be found-by interpolation between $2 \frac{8}{8}$ and $2 \frac{1}{2}$ per-cent -that $i=02305$ approximately. The yicld would therefore be approximately $£ 4.12 s .2 d$. per-cent, convertible half-yearly net, or £.4. 17s. Od. subject to tax. The adjustment for income tax consequently makes a difference of $9 d$. in this case in the yield.

The approximate calculation of the yield on a debenture bearing a fixed rate of dividend and redeemable in one sum at the expiration of a fixed period may be somewhat simplified by the use of Tables of Bond Values. Tables of this description give the values to yield various nominal rates (convertible with the same frequency as the dividend is payable, and proceeding as a rule by regular diflerences of $\frac{1}{8}$ th, $\frac{7}{1}_{10}^{10}$ th, or $\frac{1}{20}$ th) of bonds carrying various rates of dividend and redeemable at the end of various periods (proceeding by regular differences of balfyears or years). The yield on any bond coming within the limits of tabulation can of course be approximately calculated by entering the table inversely with the approximate price at the nearest dividend-date and interpolating by first differences between the yields corresponding to the next higher and lower values.

For example, Deghuée's Tables give the values of a 2.2. year 6 per-cent bond, (the dividend being payable halfyearly) as 1154492 at 4.85 per-cent and 114.7102 at 4.90 percent. Hence, in the case first disussed, if the ex-dividend price at 1 October 1915 be taken (with sufficient aceuracy for practical purposes) as 115 , the approximate yicld is $4 \cdot 55+\frac{45}{74} \times 0 \cdot 5=4 \cdot 88$ per-cent.

Since the net yield (with allowance for tax) equals the yicld on a $6(1-t)$ per-cent bond, it may be calculated by interpolating between the yield on a 6 per-cent bond and that on a 5 per-eent lond. Proceeding in the same way as above it will be found that the yield on :a 5 per-cent 22 -year bond at 115 would be $3: 97$ per-cent. Hence, if the tax be $1 s$. in the \mathfrak{f} the yield on the 6 per-cent bond would be $4 \cdot 5-\frac{6}{20} \times 91=4 \cdot 61$ net or 4.85 gross.
(b). Given the values of a_{n} at rates i^{\prime} and i respectively, find approximately the yield on an annuity payable annually for n years and bought at a price to yield interest at rate i^{\prime} on the whole purchasemoney for the term of u years, and to admit of the replacement of principal by a sinking-fund invested at the lower rate i.

Let I be the required rate. Then to yield rate I the annual rent of the annuity for each unit invested $=\frac{1}{a_{\square}}+i^{\prime}-i$.

Also to yield the effective rate i^{\prime} the annual

$$
\text { rent per unit invested would be } \frac{1}{a^{\prime} n!} \text {; }
$$

and to yield the effective rate i the annual rent per unit invested would be $\frac{1}{a_{\bar{n}}}$.

Hence

$$
\frac{\mathrm{I}-i}{i^{\prime}-i}=\frac{\frac{1}{a_{\bar{n}!}}+i^{\prime}-i-\frac{1}{a_{\bar{n}}}}{\frac{1}{a^{\prime} \bar{n}}-\frac{1}{a_{\bar{n}}}}
$$

whence

$$
\begin{equation*}
\mathrm{I}=i+\frac{\left(i^{\prime}-i\right)^{2}}{\frac{1}{a^{\prime} n}-\frac{1}{a_{n}}} \tag{15}
\end{equation*}
$$

This is an example of exterpolation, for I must obviously be greater than either i or i^{\prime}. In practice, if interest tables were available, it would be better to interpolate between the two rates of interest at which the ordinary 20 -year annuity-values were respectively just greater and just less than the annuity-value on the speeial basis.

For example, let it be required to find the yield on a 20 -year annuity bought to pay $3 \frac{1}{2}$ per-cent for 20 years on the whole sum invested, and to admit of the replacement of prineipal by a $2 \frac{1}{2}$ percent sinking-fund.
Since $\frac{1}{a_{200}}$ at $2 \frac{1}{2}$ per-cent $=\cdot 064147$, and $\frac{1}{a_{\overline{20]}}}$ at $3 \frac{1}{2}$ per-cent $=070361$, formula (15) gives

$$
I=025+\frac{\cdot 0001}{\cdot 006 \pm 14}=\cdot 04109
$$

Now $\frac{1}{a_{\overline{20}}}$ at $3 \frac{1}{2}$ and $2 \frac{1}{2}$ per-cent $=\frac{1}{\pi_{\overline{20}}}$ at $2 \frac{1}{2}$ per-cent $+01=074117$, and on reference to Table V it will be found that $\frac{1}{\sigma_{20}}=0735 S_{2}$ at 4 per-cent and 076876 at $4 \frac{1}{2}$ per-cent. Hence, by simple interpolation the required yield $=04086$ approximately.
(c). A Govermment Stock bearing interest at $3 \frac{2}{2}$ per-cent payable half-yearly for eight years, at the end of which period holders will have the option of accepting repayment or of exchanging their holdings for equal amounts of an existing stock bearing interest at 3 per-cent payable half-yearly and redeemable at par 20 years from the present time, is quoted at 110 per-cent. A half-year's interest on each stock has just been paid. What should be the present quotation of the 3 per-cent stock to give the same yield as the $3 \frac{1}{2}$ per-cent?

A present purchaser of the $3 \frac{2}{2}$ per-cent stock would obviously realize less than 3 per-cent on his investment if he were to accept repayuent at the end of eight years. Hence it must be assumed that the option to exchange will be exercised.

The first step is to determine the yield on the $3 \frac{1}{2}$ per-cent stock, allowing for the option to exchange. Since the extra $\frac{1}{2}$ receivable for the first eight years would only suffice, if applied to write down principal, to write off 4 of the premium it is obvious that the yield is considerably under 3 per-cent. If $2 \frac{2}{2}$ per-cent convertible half-yearly be taken as a trial rate, then

$$
\begin{aligned}
100 v^{10} & \text { at } 1 \frac{1}{4} & \text { per-cent } & =60 \cdot 841 \\
1 \frac{1}{2} a_{40} & , & " & =46 \cdot 990 \\
\frac{1}{4} a_{\overline{16}} & , & , & =3 \cdot 605
\end{aligned}
$$

Value of Stock to pay $1 \frac{1}{4}$ per-cent half-yearly $=111 \cdot 436$

Hence $1 \frac{1}{4}$ per-cent proves to be less than the true yield. If now $1 \frac{1}{2}$ per-cent be taken as a sccond trial rate, then

$$
\begin{aligned}
& 100 v^{40} \text { at } 1 \frac{1}{2} \text { per-cent }=55 \cdot 126 \\
& \left.1 \frac{1}{2} /{ }^{2}+0 \right\rvert\, \quad \text {. } \quad, \quad=44.574 \\
& { }_{4}^{1} a_{10} \quad . \quad . . \quad 3.53: 3
\end{aligned}
$$

Value of Stock to pay $1 \frac{1}{2}$ per-eent half-yearly $=103 \cdot 5: 33$

Hence by interpolation, the half-yearly yield is approximately

$$
\cdot 0125+\frac{1 \cdot 436}{7 \cdot 903} \times \cdot 0025=\cdot 01295
$$

It only remains to calculate the value of the 3 per-cent Stock at this rate.

$$
100 c^{10} \text { at } 1 \because 95 \text { per-cent }=(\text { by logarithms }) 59769
$$

$\therefore \quad$ Value of Stock per-cent $=59 \cdot 769+\frac{.015}{.01295}(100-59 \cdot 769)$

$$
=106 \cdot 37
$$

The 3 per-cent Stock should therefore be quoted at $106 \frac{1}{2}$ approximately.
(d). A 5 per-cent loan was issued on 1 July 1910 at the price of 9.5 per-cent. Interest is payable half-yearly on 1 January and 1. July, and the principal is repayable at par in 20 equal instalments, by annual drawings commencing on 1 July 1916. Determine approximately (i) the rate of interest paid by the borrowers on the whole loan; (ii) the rate realized by an original subscriber on a bond drawn for repayment on 1 July 1!916.
(i). In addition to paying 2.5 half-yearly for each 95 borrowed -that is, $2.631 \ldots$ per-cent half-yearly on the issue price-the borrowers have to pay a bonus of 5 on redemption, which (as the average term of the loan is 15 years) might be roughly equivalent to an additional $\frac{2}{6}$ th per-cent interest half-yearly. Hence, 2^{3} percent would appear to be a suitable half-yearly trial rate.

In terms of a half-yearly rate of interest,

$$
\begin{aligned}
& \mathrm{K}^{\prime}=025\left(a_{50}^{\left(\frac{21}{3}\right.}-a_{30}^{\left(\frac{2}{20}\right)}\right) \text { per unit repayable } \\
& =025 \times \frac{a_{501}-\frac{a}{i 0}}{1+\frac{i}{2}} \\
& =\text { at } 2_{4}^{3} \text { per-cent } \frac{455927}{1 \cdot 01375} \text { or } \cdot 45270 \text {. }
\end{aligned}
$$

Also $\mathrm{C}=1$; $\mathrm{A}=95$; and $g=025$. Hence, by formula (11),

$$
\begin{aligned}
i & =\cdot 025+\cdot 0275 \frac{\cdot 5}{5473} \\
& =02751 \text { approximately. }
\end{aligned}
$$

In this case it turns out that the true yield is very close to the assumed rate．In fact，at $2 \frac{3}{4}$ per－cent the value of the loan per unit，by the formula $\mathrm{A}=\mathrm{K}+\frac{7}{i}(\mathrm{C}-\mathrm{K})$ ，

$$
=45270+\frac{.025}{0275} \times 54730=05025
$$

And the value to pay $2 \frac{1}{2}$ per－cent half－yearly would elearly be unity．Hence，by interpolation，the half－yearly yield at the issue－ price of $95=.0275+\frac{.00025}{.05} \times \cdot 0025$ ，

$$
=02751 \ldots \text { as before }
$$

（ii）．The rate realized on a bond drawn for repayment on 1 July 1916 may be approximately calculated by formula（1）

Here $g=.025 ; k=-05 ; n=12$ ．Hence the half－y early yield

$$
=\frac{\frac{1}{40}+\frac{1}{240}}{1-\frac{13}{480}}=\cdot 03 \text { very nearly. }
$$

The true yicld is，in fact，slightly over 3 per－cent half－yearly，for the value of the bond at the time of issue，to yield this rate，would
 bond in this case being bought at a discount，formula（1）gives，as explained in Art．5，rather too small a value for i ．
（e）．The Revenue Account of an assurance company shows that the fund increased from A at the beginning of the year to B at the end of the year，and that the net interest earnings（after deduction of income tax）were I．Find approximately（i）the effective rate of interest； （ii）the force of interest，earned on the fund in the year．
（i）．In order to find the effective rate，it is usual to consider the interest earnings as received at the end of the year and the other income and the outgo as uniformly distributed over the year． On this basis the balance of other income（exclusive of interest earnings）and outgo，amounting to $\mathrm{B}-\mathrm{A}-\mathrm{I}$ ，must be treated as received continuously throughout the year．Hence，if i be the required effective rate，

$$
\mathrm{A}(1+i)+(\mathrm{B}-\mathrm{A}-\mathrm{I}) \bar{s}_{\overline{1}_{4}}=\mathrm{B} .
$$

Now, $\quad \bar{s}_{\overline{1}}=\frac{i}{\log _{e}(1+i)}=\frac{1}{1-\frac{i}{2}+\frac{i^{2}}{3}-\ldots}=1+\frac{i}{2}-\frac{i^{2}}{12} \ldots$

$$
\therefore \quad \mathrm{A}(1+i)+(\mathrm{B}-\mathrm{A}-1)\left(1+\frac{i}{2}-\frac{i^{2}}{12} \cdots\right)=\mathrm{B},
$$

whence (if powers of i above the first be neglected),

$$
i=\frac{2 \mathrm{I}}{\mathrm{~A}+\mathrm{B}-\mathrm{I}} \text { approximately. }
$$

This result gives the net effective rate. If the gross interest earnings were I^{\prime}, the gross yield would of course be $\frac{2 I^{\prime}}{A+B-I}$, not $\frac{2 I^{\prime}}{A+B-I^{\prime}}$.
(ii). The force of interest, i.e., the nominal rate of interest convertible momently, is measured by the ratio of the interest received during an indefinitely short interval to the principal bearing interest during that interval. Its value will vary slightly from moment to moment, but, on the assumption that income (including interest earnings) and outgo are uniformly distributed over the year, its average value may be taken to be the ratio of the interest earnings to the mean fund. Hence, if δ be the required force of interest,

$$
\delta=\frac{2 I}{A+B} \text { approximately. }
$$

It is easy to show that these values of i and δ approximately correspond. For

$$
\begin{aligned}
i & =\frac{2 \mathrm{I}}{\mathrm{~A}+\mathrm{B}-\mathrm{I}}=\frac{2 \mathrm{I}}{\mathrm{~A}+\mathrm{B}}\left(1-\frac{\mathrm{I}}{\mathrm{~A}+\mathrm{B}}\right)^{-1} \\
& =\frac{2 \mathrm{I}}{\mathrm{~A}+\mathrm{B}}+\frac{2 \mathrm{I}^{2}}{(\mathrm{~A}+\mathrm{B})^{2}}+\ldots \\
& =\delta+\frac{\delta^{2}}{2!}+\ldots
\end{aligned}
$$

which, to the seeond power, is the correct relation between the effective rate of interest and the corresponding force.
(f). Consols were bought on 17 June 1900 at $101 \frac{5}{8}$. What rate of interest did they then yield?

The rate of dividend on Consols up to 5 April 1903 was $2 \frac{3}{3}$ per-eent,
but it is clear that the extra $\frac{1}{4}$ per-cent per annum for 3 years was not sullicient to write off the premium of $1 \frac{5}{8}$ per-cent. It would have been proper to assume, therefore, at the date of purchase that the option to redeem at 5 April 1923 would be exercised.

As the tables at the end of this book do not go below 1 per-cent, it will be convenient to find the approximate effective yield. Then, since the period elapsed since the last dividend-date was 73 days, the algebraical expression, in terms of the effective rate i, for the value of the stock percent on 17 June 1900 will be $(1+i)^{\frac{3}{8}}\left[\left(2 \frac{1}{2} a_{23}+\frac{1}{4} \alpha_{\overline{3}}\right) \times \frac{i}{j_{(3)}}+100 v^{23}\right]$. If $i=025$ be taken as a trial rate, the value of this expression will be $1.00495[44.044 \times 1.00933+56 \cdot 670]$ which $=101 \cdot 626$. This is so close to 101_{5}^{5} that it is umecessary to take another trial rate. At the date in question the yield on the stock was almost exactly $2 \frac{1}{2}$ per-cent effective.
(g). A Foreign Railway Loan, originally for $£ 2,000,000$, bearing interest at 5 per-cent, payable half-yearly on 1 January and 1 July, and redecmable at 105 per-cent by half-yearly drawings (for repayment on 1 January and 1 July) by the operation of an accumulative sinking-fund- $£ 65,000$ being applied half-yearly to the service of the loan-is quoted $11 \frac{1}{2}$ years after issue at 95 ex interest. What rate of interest would the investment yield to a syndicate acquiring the whole of the outstanding bonds.

The investment practically amounts to the purchase of an annuity of $£ 130,000$ per annum, payable half-yearly for the remaining term of the loan, at a price equal to 95 per-cent of the nominal amount of the outstanding bonds. Hence it will be necessary in the first instance to find (i) the term which the loan has still to run ; (ii) the amount of the outstanding bonds.

Let n be the number of half-years comprised in the original term of the loan-from the date of issue to the date of redemption of the last bond.

Then, since the loan was virtually a loan of $£ 2,100,000$, repayable with interest at the rate of $\frac{5}{1 \cdot 05}$ per-cent per annum convertible halfyearly, by an annuity of $£ 130,000$ per annum, payable half-yearly, it follows that

$$
6 \cdot 5 a_{n}=210
$$

where $a_{\bar{n}}$ is to be calculated at $\frac{2 \cdot 5}{1 \cdot 05}$ per-cent,
whence $\quad n=\frac{\log 13-\log 3}{\log 43-\log 4 \cdot 2}=\frac{\cdot 63652.21}{\cdot 010 \cdot 10 \cdot 2}=62 \cdot 316$.

At the date of valuation, therefore, the loan has $39 \cdot 316$ half-years still to run, and the nominal amount of the outstanding bonds is $\frac{1}{1 \cdot 05} \times 65,000 a_{39 \cdot 310}$ at $\frac{2 \cdot 5}{1 \cdot 05}$ per-cent, or $1,569,149$, the value of which, at 95 per-cent would be $1,490,692$. Hence, the question resolves itself into finding the rate of interest at which $a \overline{39 \cdot 316}=\frac{1,490,692}{65,000}$ or $22 \cdot 934$.
By reference to a table of the values of $a_{n} \bar{n}$, it will be found that the required mate is very nearly 03 . Hence, the investment would yield, approximately, 6 per-cent convertible half-yearly.

In practice the redemption-schedule would be so adjusted as to provide for the repayment of an exact integral number of bonds at the end of each half-year and for the repayment of the whole of the then outstanding bonds at the end of the 31 st jear, but this would not materially affect the yield.
(h). A loan bearing interest at g per unit payable half-yearly and repayable by annual drawings at par, or by annual purchases in the market if below par, is issued at a discount of k per unit. What rate of interest does it yield (1) if a fixed proportion of the loan, \approx per unit, is to be drawn or purchased annually ; (2) if a fixed sum of z per unit is to be applied annually in drawings or purchase?

The effect of an option to purchase in the market has been considered in Chapter V, Article 32. In the present instance it will be reasonable to assume that the bonds required for redemption will be purchasable annually in the market at prices yielding the same rate as that yielded by the loan at the time of issue. On thas assumption the required rate will be the rate yielded by a bond bearing interest at rate g payable half-yenty and repayable at par at the end of the term of the loan.

In case (1) the term of the loan will be $\frac{1}{z}$, and the half-yearly yield may be found approximately by any of the usual methods.

In case (2), if i be the effective jield and n the term of the loan,

$$
z s_{17}=1
$$

and

$$
\begin{aligned}
& i=\left(i-g s_{2}^{(2)}\right) a_{n} \\
& i=\frac{k i \approx+g s_{1}^{(2)}}{1-i}
\end{aligned}
$$

whenee
from which i may be found either by solution of a quadratic or by interpolation.

The relation $z+g s_{11}^{(2)}=(1-k)(z+i)$ could, of course, be written down withont the introduction of n, since a year's sinking-fund and dividend must just suffice to pay a year's interest at rate i on the original invested capital and to pay off \approx per mit of the investect eapital.

CHAPTER VII.

Capital Redemption Assurances.

1. It has been shown in previous chapters that the eapital invested in any series of payments may be replaced by means of a sinking-fund. More generally, a sum required at the end of any number of years, whether to replace invested capital or for any other purpose, may be sccured, in theory, by the accumulation of an annual sinking-fund of $\frac{1}{s n_{n}}$ per unit, where n is the number of years in question. In practice, however, an isolated transaction of this mature presents certain difficulties; it may be found impracticable to invest the requisite sinkingfund and the periodical interest-earnings with the necessary regularityi: fact, this difficulty would almost invariably arise in the case of a sinking-fund of small amount-and, owing to the fluetuations in the rate of interest obtainable upon investments, the accumulation of a fixed periodical sinking-fund will not, as a rule, produce the exact sum required. Consequently, many insurance companies have, of late years, nade it part of their business to grant assurances securing the payment of a fixed sum at the expiration of a fixed term of years. These assurances were originally intended to meet the requirements of investors in leasehold properties, and were aecordingly called Leasehold Redemption Assurances, but they have since been utilized for many other financial purposes-to provide, for example, for the repayment of the principal of a loan or for the redemption of a debenture-issue-and have acquired the alternative names of Sinking-Fund Assurances and Capital Redemption Assurances.
2. The consideration for a Capital Redemption Assurance-that is the priee paid to the assurance company in consideration of its granting
the assurance-usually takes the form of a single payment made at the inception of the assurance, or of a series of uniform periodical payments made at equal intervals throughout the term of the assurance, the first such payment being made at the inception of the assurance and the last at the beginning of the concluding interval in the term. The single payment and the uniform periodical payment are called respectively a Single Premium, and an Ammal, Half-yearly, or Quarterly Premium, as the case may be. It will be observed that the periodical premium is of precisely the same nature as a sinking-fund, but that it differs from it in being paid at the beginning of each interval, or, in other words, in advance, instead of at the end of each interval. In fact, the payments of the periodical premium for a Capital Redemption Assurance form an annuity-due, whereas the suceessive sinking-fund contributions form an ordinary annuity.
3. The net Single Premium for a Capital Redemption Assurance of 1 , payable at the end of n years-that is, the Single Premium which, if accumulated at the assumed rate of interest, without any deduction for expenses or for the profit of the insurers, would amount to 1 at the end of n years-is denoted by the symbol $\mathrm{A}_{\bar{n}}$. The net periodical premium for a similar assurance is denoted by the symbols $\mathrm{P}_{\bar{n}}, \mathrm{P}_{n}^{(2)}, \mathrm{P}_{n}^{(4)}$, \&e., according as it is payable yearly, half-yearly, quarterly or with any other frequeney.
4. The net Single Premium for a Capital Redemption Assurance has been defined to be such a sum as would accumulate to the sum assured by the end of the given term; hence, it follows that, on the basis of a single uniform rate of interest i,

$$
\begin{align*}
\mathrm{A}_{\bar{n}} \times(1+i)^{n} & =1 \\
\mathrm{~A}_{\bar{u}} & =v^{n} \tag{1}
\end{align*}
$$

whence
On the same basis,
whence

$$
\mathrm{P}_{\bar{n}}\left[(1+i)^{n}+(1+i)^{n-1}+\ldots(1+i)\right]=1
$$

$$
\begin{equation*}
\mathrm{P}_{\bar{n}}=\frac{1}{s_{\overline{n+1} \mid}-1} . \tag{2}
\end{equation*}
$$

Alternative expressions for $\mathrm{P}_{\bar{n} \mid}$ may be obtained as follows:
(i) The net annual premium must clearly be the equivalent, in the form of an annuity-due, of the net single premium; hence it follows that

$$
\begin{align*}
& \mathrm{P}_{\bar{n} \cdot} \times \mathbf{a}_{\bar{n} \mid}=\mathrm{A}_{\bar{n} \mid} \\
& \mathrm{P}_{\bar{n}}^{\prime}=\frac{r_{n}}{\mathbf{a}_{\bar{n} \mid}} . \tag{3}
\end{align*}
$$

(ii) Again, the annual rent obtained by the investment of a unit in the purchase of an annuity-due, payable annually for n years, must be equal to interest in advance on the unit, together with is sum sufficient, if accumulated thronghout the term of the annuity, to replace the unit at the end of the term. But the interest in advance on 1 is d; and the sum paid annually in advance which will, if duly aceumulated, produce 1 at the end of n years is $P_{\bar{n}}$.

Hence

$$
\frac{1}{\mathrm{a}_{n!}}=d+\mathrm{P}_{\bar{n}}
$$

whenee

$$
\begin{equation*}
\mathrm{P}_{\bar{n} \mid}=\frac{1}{\mathbf{a}_{\bar{n} \mid}}-d \text { or } \frac{1}{1+\frac{a_{n-1}}{a_{n}}}-d \tag{4}
\end{equation*}
$$

It may be easily shown that formulas (2), (3), and (4) are algebraically identical. For

$$
\begin{aligned}
\frac{1}{s_{\overline{n+1}}-1} & =\frac{1}{(1+i) s_{\overline{n \mid}}}=\frac{v^{n}}{(1+i) \alpha_{\bar{n}}} \\
& =\frac{i^{n}}{\mathbf{a}_{\bar{n} \mid}^{-}}=\frac{1-i a_{\overline{n \mid}}}{\mathbf{a}_{\overline{n \mid}}}=\frac{1}{\mathbf{a}_{\bar{n} \mid}}-d
\end{aligned}
$$

5. From the form of the expression obtained in formula (4), it appears that the numerical value of $P_{\bar{n}}$ for given values of n and i may be found by entering an Annual Premium Conversion 'lable with the value of $a \overline{n-1}$. The subject of Conversion Tables is fully discussed in Chapter VIII of the Text-Book, Part II, and it will be sufficient to state here that Annual Premium Conversion Tables are tables giving at various rates of interest the values of $\frac{1}{1+X}-d$ for values of X proceeding by small equal differences throughout the rance of practicable annuity-values. Hence, if the table based on the rate of interest i beentered with the value of $a \overline{n-1}$ at that rate, the result will be

$$
\frac{1}{1+\mu_{\overline{n-1}}}-\pi, \text { or } \mathrm{P}_{\bar{n}}
$$

Let it be required, for example, to find the value of P_{20} at 3 per-cent. The value of $\alpha_{19 \mid}$ at 3 per-cent is, to three places of decimals, 14.324 , and the tabulated value corresponding to 14.324 in the 3 per-cent Annual Premium Conversion Table is $\cdot 03613$. Hence $P_{20 \mid}$ at 3 per-cent $=\cdot 03613$. Of course, this result might also have been obtained by taking the reciprocal of $\left(s_{21}-1\right)$ or $27 \cdot 676$.
6. The values of $\mathrm{P}_{n}^{(2)}, \mathrm{P}^{(4)}$, \&c., may be readily obtained by any of the methods employed in finding an expression for $\mathrm{P} \bar{n} \mid$. In general,

$$
\begin{align*}
\mathrm{P}_{n \mid}^{(m)} & =\frac{1}{\frac{1}{m}(1+i)^{n}+s_{n}^{(m)}-\frac{1}{m}}=\frac{v^{n}}{\mathrm{a}_{n \mid}^{(m)}} \\
& =\frac{1}{\mathrm{a}^{(m)} \frac{1}{n \mid}}-m\left(1-v^{\prime m}\right) \quad . \quad . \tag{5}
\end{align*}
$$

The third expression is given for purposes of comparison with the corresponding expression for $\mathrm{P}_{\bar{n}}$, but from its form it will be seen that the Annual Premium Conversion Table affords no facilities for the evaluation of $\mathrm{P}_{n \mid}^{(m)}$.

In the special ease in which m is made infinite $P^{\left(\frac{m)}{n \mid} \text { becomes the }\right.}$ premium per annum payable continuously, by infinitely small instalments, for an assurance of 1 payable at the end of n years, and is denoted by the special symbol $\overline{\mathrm{P}}{ }_{n}$.

Formula (5) then becomes

$$
\begin{equation*}
\overline{\mathrm{P}}_{\bar{n}}=\frac{1}{\overline{s_{\bar{n}}^{-}}}=\frac{v^{n}}{\bar{a}_{n}^{-}}=\frac{1}{\overline{a_{\bar{n}}}}-\delta \tag{6}
\end{equation*}
$$

The numerical value of $\mathrm{P}_{\bar{n}}$ may be found by entering with $\bar{a}_{\bar{n} \mid}$ an Annuai Premium Conversion 'Table constructed on a continuous basis (that is, a table in which X is the argument and $\frac{1}{X}-\delta$ the result).
7. It will be seen that the sole difference between the net annual premium for a Capital Redemption Assurance and the net premium per annum payable at more frequent intervals consists in the fact that the former is payable in one sum at the beginning of the year, while the latter is payable by instalments spread over the year. The second method of payment entails a loss of interest to the assurer as compared with the first, and consequently necessitates a corresponding inerease in the premium per annum payable at more frequent intervals as compared with the annual premium. In the case of a premium payable m times a year, the loss of interest, valued at the beginning of the year, is

$$
\begin{aligned}
\frac{1}{m} \mathrm{P}_{n \mid}^{(m)} & {\left[\left(1-v^{\frac{1}{m}}\right)+\left(1-v^{\frac{2}{n}}\right)+\ldots+\left(1-v^{\frac{m-1}{m}}\right)\right] } \\
& =\mathrm{P}_{n \mid}^{(m)}\left(1-\mathrm{a}_{\left.\frac{(m)}{1} \right\rvert\,}^{(n)}\right)
\end{aligned}
$$

Hence, it follows that

$$
\begin{aligned}
& \mathrm{P}_{n \mid}^{(m)}=\mathrm{P}_{n j}+\mathrm{P}_{n \mid}^{(m)}\left(1-\mathrm{a}_{\overline{1} \mid}^{(m)}\right) \\
& \mathrm{P}_{n_{1}}^{\left(\frac{(m)}{}\right.}=\frac{\mathrm{P}_{n]}}{\mathrm{a}_{\bar{n} \mid}^{[m)}}=\mathrm{P}_{n \mid} \cdot \frac{j_{(m)}}{d\left(1+\frac{j_{(m)}}{m}\right)}
\end{aligned}
$$

whence

This relation may be readilv obtained from formula (5). For, since
it follows that

$$
\mathbf{a}_{\bar{n}}^{(m)}=\mathbf{a}_{\bar{n}} \cdot \mathbf{a}_{i \mid}^{(m)}
$$

$$
\mathbf{P}_{n \mid}^{(m)}=\frac{v^{n}}{\mathbf{a}_{n}^{-}} \cdot \frac{1}{\mathbf{a}_{1\rceil}^{(m)}}=\mathrm{P}_{n} \frac{. \eta_{(m)}}{d\left(1+\frac{j_{(m)}}{m}\right)}
$$

As a special case,

$$
\overline{\mathrm{P}}_{\bar{n}}=\mathrm{P}_{\bar{n}} \frac{\delta}{d} .
$$

8. At the expiration of the term of a Capital Redemption Policy, the net premiums paid in respect of the Policy, accumulated at the rate of interest assumed in the calculation of the premium, will amount, by definition, to the sum assured. Further, at any given time during the currency of the Policy, the net premiums paid up to that time will clearly amount to such a sum as will suffice, with the remaining premiums and interest, to provide the sum assured on the expiration of the term of the Policy. This sum is called the Value of the Policy, or the PolicyFalue. It will be seen, therefore, that the Value of a Capital Redemption Policy, at any time during its currency, may be determined 11 two ways, namely, either (i) by a retrospective process, as the accumulated amount of the net premiums paid, or (ii) by a prospective process, as the difference between the discounted value of the sum assured and the discounted value of the remaining net premiums. 'These two methods of determining the Policy-Value must obviously produce identical resuits.
9. The Value, at the end of t years, of a Capital Redemption Policy assuring 1 at the expiration of n years, at a net annual premium of $\mathrm{P}_{\bar{n}}$, is denoted by the symbol V_{n}; the value, after t years, of a similar policy, at a net premium of $\mathrm{P}_{n \mid}^{(m)}$ per annum payable m times a year, is denoted by the symbol ${ }_{t} \mathrm{~V}_{n}^{(m)}$.

It will be convenient to consider separately the two cases in which t is (i) integral, and (ii) partly integral and partly fractional-the first
case being that of a policy which has been an exact number of years in force, and the second that of a policy which has been in force an integral number of yeurs and a fraction of a year.
(i) Let t be integral. In this case it will be proper to assume that t years' premiums have been paid and that the next premium is about to fall due.

Considered retrospectively the policy-value may be regarded, as already explained, as the aceumulated amount of the net premiums paid. From this point of view, therefore.

$$
\begin{equation*}
{ }_{t} \mathrm{~V}_{\bar{n}}=\mathrm{P}_{\bar{n} \mid}\left(s_{\overline{t+1}}-1\right)=\frac{s_{\overline{t+1}}-1}{s_{\overline{n+1}}-1}=\frac{s_{\bar{t}}}{s_{\bar{n} \mid}} \tag{7}
\end{equation*}
$$

Considered prospectively the policy-value is such a sum as will, with the remaining premiums and interest, suffice to provide the sum assured at the expiration of the term of the policy; that is to say, it is the present value of the sum assured less the present value of the remaining premiums. Hence, from this point of view,

Now

$$
t_{\bar{n}}=r^{n-t}-\mathrm{P}_{n} a_{\overline{n-t}}
$$

$$
v^{n-t}=1-i a_{\overline{n-t}}=1-d \mathrm{a}_{\overline{n-t}}
$$

$$
\therefore \quad \mathrm{V}_{\mathrm{n}}=1-\left(\mathrm{P}_{\bar{n}}+d\right) \mathrm{a} \overline{n-t}
$$

And by formula (4), $\quad \mathrm{P}_{\bar{n}}^{\bar{n}}+d=\frac{1}{\mathrm{a}_{\bar{n}}}$

$$
\begin{equation*}
\therefore \quad V_{\bar{n}}=1-\frac{a_{\overline{n-t}}}{a_{\bar{n}}} \tag{8}
\end{equation*}
$$

From this expression the algebraical identity of the formulas obtained by the retrospective and prospective methods may be readily established. For

$$
1-\frac{\mathbf{a}_{\overline{n-t}}}{\mathbf{a}_{n \mid}}=\frac{\mathbf{a}_{\bar{n}}-\mathbf{a}_{\overline{n-t}}}{\mathbf{a}_{n!}}=\frac{v^{n-t} \mathbf{a}_{\bar{t}}}{\mathbf{a}_{\bar{n}}}=\frac{s_{\bar{t}}}{s_{\bar{n}}} .
$$

In the case of a policy subject to a premium payable m times a year, each year's premim is the exact equivalent, after allowance for loss of interest, of the annual premium for a similar policy. Hence it follows that the.policy-value at the end of any integral number of years will be the same as that of a similar policy subject to amual premiums. This result may be readily established by algebra. For

$$
\begin{aligned}
\boldsymbol{t}^{\frac{(m)}{n}} & =\mathrm{P}_{\frac{(m)}{n \mid}}^{(1+i)^{\frac{1}{m}} s_{\bar{t} \mid}^{(m)}} \\
& =\frac{(1+i)^{\frac{1}{m} s_{t}\left(\frac{(m)}{}\right.}}{(1+i)^{\frac{1}{m} s_{n \mid}^{(m)}}}=\frac{s_{\bar{t} \mid}^{(m)}}{s_{n}^{(m)}}=\frac{s \bar{t}}{s_{n}^{n}}={ }_{t} \mathrm{~V}_{\bar{n} \mid} .
\end{aligned}
$$

(ii). Let t be partly integral and partly fractional. In this cass $(r+1)$ premiums will have been paid on a policy subject to annual premiums, where r is the greatest integer in t, while r premiums and one or more instalments of an additional full year's premium will have been paid on a policy subject to premiums payable m times a year.

Take first the case of a policy subject to annual premiums, and let $t=r+\frac{1}{p}$. Then by the retrospective method

$$
\begin{align*}
r+\frac{1}{p} \mathbf{V}_{n} & =\mathrm{P}_{\bar{n} \mid} s_{\bar{r}+1}(1+i)^{\frac{1}{p}}=(1+i)^{\frac{1}{p}}\left(. \mathrm{V}_{\bar{n} \mid}+\mathrm{I}_{\bar{n} \mid}\right) \\
& =v^{1-\frac{1}{p_{r}}}{ }_{r+1} \mathrm{~V}_{n} \cdot \ldots \tag{9}
\end{align*}
$$

and by the prospective method

$$
\begin{aligned}
\left.r+\frac{1}{p} \mathbf{V}_{\bar{n}} \right\rvert\, & \left.\left.=v^{n-r-\frac{1}{p}}-v^{1-\frac{1}{p}}\right]_{\bar{n} \mid} \mathbf{a}_{\overline{n-r-1}}\right] \\
& =v^{1-\frac{1}{p}}\left[v^{n-r-1}-\mathrm{P}_{\bar{n}} \mathbf{a}_{n-r-1}\right] \\
& =v^{1-\frac{1}{p}}{ }_{r+1} \mathrm{~V}_{\bar{n} \mid} \text { as before. }
\end{aligned}
$$

In the case of a policy subject to a premım payable m times a year, let $t=r+\frac{l}{m}+\frac{1}{q m}$. There will then have been paid on the policy r full years' premiums and $(l+1)$ instalments of an additional year's premium. Hence

$$
\begin{align*}
& r+\frac{l}{m}+\frac{1}{q m} \mathrm{~V}^{\frac{(m)}{n}}=(1+i)^{\frac{1}{q^{m}}} \mathrm{P}_{n \mid}^{\left(\frac{(m)}{} s_{r}^{(m)}\right.} s_{r+\frac{l+1}{n_{c}}}^{(} \\
& =(1+i)^{\frac{1}{1 \cdot n}} \mathrm{P}_{n \mid}^{(m)} v^{1-\frac{l+1}{m}}\left(s_{r+1}^{(m)}-s_{\left.1-\frac{(m)}{m_{i}} \right\rvert\,}^{(\mp 1}\right) \\
& =v^{1-\frac{l}{m}-\frac{1}{q m}}{ }_{v+1} V_{\bar{n}}-(1+i)^{\frac{1}{q m}} \mathrm{P}_{n}^{(m)} \pi_{1-\frac{1 \mp 1}{m}}^{(m)} \\
& ={ }_{r+\frac{l}{m}}+\frac{1}{\frac{1}{2 m}} V_{\bar{n}}-(1+i)^{\frac{1}{4 n}} \mathrm{~J}^{\left(\frac{m)}{n \mid}\right)} a_{\left.1-\frac{l+1}{m} \right\rvert\,}^{(m)} \tag{10}
\end{align*}
$$

This relation shows that at the end of any fractional period the value of a Capital Redemption Poliey, subject to premiums payable m times a year, falls short of the value of a similar policy at annual premiums by the value of the unpaid portion of the full year's premium -a result which might have been deduced from the consideration that at the end of the year the two policies have the same value.

If $\frac{1}{q}$ be put $=0$ in formula (10) the resulting expression gives the policy-value just after payment of the $(l+1)$ th instalment of the full year's premium, and in order to obtain the value just before payment of that instalment-that is, at the end of $r+\frac{l}{m}$ years-it would be necessary to deduct $\frac{1}{m} \mathrm{P}_{\bar{m} \mid \text {. }}^{(m)}$. The required result may, however, be more simply obtained by putting $q=1$, whence

$$
\left.r+\frac{l+1}{m} V_{\bar{n} \mid}^{(m)}={ }_{r+\frac{l+1}{m}} \mathrm{~V}_{\bar{n} \mid}-\mathrm{P}_{\bar{n}}^{(m)} \mathrm{a} \mathrm{a}_{1-\frac{(m)}{m+1}}^{m} \right\rvert\,
$$

and, by writing ($l-1$) for l,

$$
\begin{equation*}
r+\frac{l}{m} \mathrm{~V}_{n \mid}^{(m)}={ }_{r+\frac{l}{m}} \mathrm{~V}_{\bar{n}}-\mathrm{P}_{n \mid}^{(m) \mid} \mathrm{a}_{1-\frac{l}{m}}^{(m)} \tag{11}
\end{equation*}
$$

Thus the value of a policy subject to a half-yearly premium, just before payment of the second half-year's premium, is given by the formul:ı

$$
r+\frac{1}{2} V_{\bar{n}}^{\left(\frac{2}{n}\right)}=r+\frac{1}{2} V_{\bar{n}}-\frac{1}{2} P_{\bar{u} \mid}^{(9)} .
$$

From the foregoing analysis it appears that Capital Redemption Policies subject to premiums payable at half-yearly or shorter intervals may-be valued, with approximate accuracy, as policies at annual premiums subject to deduction of the unpaid instalments (if any) of the current year's premium.
10. Since $P_{\bar{n}}=\frac{1}{(1+i) \varepsilon_{\bar{n}}}$ and $s_{\bar{n}}=(1+i)^{n-1}+(1+i)^{n-2}+\ldots+1$, it is elear that the lower the rate of interest assumed in the calculation of the premium, the larger will be the premium. On the other hand, the lower the rate of interest employed in accumulating the premiums, the smaller will be their accumulated amount. A decrease in the assumed rate of interest affects the poliey-value, therefore, in two opposite ways,
and the question arises whether the net result is to increase or decrease the value.

Since ${ }_{1} V_{\bar{n}}=(1+i) \mathrm{P}_{\bar{n}}=\frac{1}{s_{n}}$, it is evident that a decrease in the rate of interest increases the value of a policy of one year's duration, provided n be >1.

Now

$$
\begin{aligned}
1-{ }_{t} V_{\bar{n}} & =\frac{\mathbf{a}_{\overline{n-t \mid}}^{\mathbf{a}_{\bar{n}}}}{} \\
& =\frac{\mathbf{a}_{\overline{n-1}}^{\mathbf{a}_{\bar{n} \mid}} \cdot \frac{\mathbf{a}_{\overline{n-2}}^{\mathbf{a}_{\overline{n-1}}}}{} \cdots \cdots \cdot \frac{\mathbf{a}_{\overline{n-t}}^{\mathbf{a}_{\overline{n-t+1}}}}{}}{}=\left(1-{ }_{1} V_{\bar{n}}\right)\left(1-{ }_{1} \mathrm{~V}_{\overline{n-1}}\right) \cdots\left(1-{ }_{1} \mathrm{~V}_{\overline{n-t+1}}\right)
\end{aligned}
$$

and since ${ }_{1} \mathrm{~V}_{\vec{n}},{ }_{1} \mathrm{~V}_{\overline{n-1}}$, \&c., being the values of policies of one year's duration, are all increased by a decrease in the rate of interest, it follows that $1-V_{\bar{n}}$ is decreased, and, therefore, that $V_{\bar{n}}$ is increased. Hence, the lower the assumed rate of interest the greater will be the policyvalue.
11. The net amual premum for a Capital Redemption Assurance of 1 , payable at the expiration of $n-t$ years, is P_{n-t}. Hence, when an n-year poliey for 1 , at a net annual premium of P_{n}, has been t rears in force, the remaining ($n-t$) premiums of $\mathrm{P}_{\bar{n}}$ would assure the sum of $\frac{\mathrm{P}_{\bar{n}}}{\mathrm{P}^{\prime} \frac{1}{n-t}}$, and the accumulations of the t premiums already paid must be sufficient to secure the balance of the sum assured, namely, $1-\frac{\mathrm{P}_{\bar{n} 1}}{\mathrm{P}_{n-t}}$. It follows, therefore, that at the end of t years an n-year policy for 1 could be converted into a Free or Paid-up Policy (that is, a policy free from any further payments of premium) for $1-\frac{\mathrm{P}_{\bar{r}}}{\mathrm{P}_{n-1}}$. The Pail-up equivalent of an n-year Capital Redemption Policy at the end of t vears is denoted by the symbol ${ }_{t} \mathrm{~W}\left(A_{\bar{n}]}\right)$.

Hence, in the case of an n-year Capital Redemption Poliey for 1, subject to an amnal premium of $\mathrm{P}_{\bar{n}}$, which has been t years in force

$$
\begin{align*}
{ }_{t} \mathrm{~W}\left(\mathrm{~A}_{\bar{n}}\right) & =1-\frac{\mathrm{P}_{\bar{n} \mid}}{\mathrm{P}_{\overline{n-t}}}=1-\frac{s_{\overline{n-t}}^{s_{\bar{n}}}}{} \\
& =\frac{(1+i)^{n-t} s_{\bar{t} \mid}}{s_{\bar{n}}}=\frac{a_{\bar{t}}}{a_{\bar{n}}} . \tag{12}
\end{align*}
$$

$$
\text { Also, since } \begin{aligned}
\frac{s_{\imath}}{s_{n}} & =\boldsymbol{V}_{n} \\
{ }_{t} \mathrm{~W}\left(\mathrm{~A}_{\bar{n}}\right) & =\frac{t_{\bar{n}}}{r^{n-t}}=\frac{t^{n}}{\mathrm{~A}_{\bar{n}}}
\end{aligned}
$$

This result shows that, as must clearly be the ease, the amount of the Paid-up Poliey is the sum which the policy-value, if applied as a single premium, would assure at the expiration of the term of the original policy.

In pratice, a Capital Redemption Policy may usually be converted into a Paid-up Poliey for an amount bearing the same proportion to the full sum assured as the number of premiums paid bears to the total number payable.

On this basis, an n-year poliey for 1 would be convertible at the end of t years into a paid-up policy for $\frac{t}{n}$. This amount is less than the theoretical paid-up equivalent; for, since the Arithmetical Mean of the n quantities $v, v^{2}, \ldots v^{n}$, is obviously less- n being $>t$-than that of the t quantities $v, v^{2} \ldots v^{t}$, it follows that $\frac{a_{\bar{n}}}{n}$ is $<\frac{a_{t}}{t}$, and therefore that $\frac{a_{\bar{t}}}{a_{\bar{n} \mid}}$ is $>\frac{t}{n}$ or that $t \mathrm{~W}\left(\mathrm{~A}_{\bar{n} \mid}\right)$ is $>\frac{t}{n}$.
12. Of the numerous practical questions that arise in comnection with Capital Redemption Assurances the following may be taken as ex:mples:
(i) A Capital Redemption Policy for a term of 40 years, subject to an amnal premium at the rate of £1. Ss. per-cent, is offered for sale just before the 11 th amual premium falls due. What would be its value as an investment to pay 4 per-cent interest, and how would the value be affected (a) if the policy were convertible, at the option of the holder, into a Paid-up Poliey for a reduced amount bearing the same proportion to the full sum assured as the number of premiums paid bears to the total number originally payable, (b) if it carried a guaranteed survendervalue of $9 \overline{5}$ per-cent of the premiums paid accumulated at \because per-cent compound interest?

If the poliey be regarded simply as a contract securing the payment of the sum assured at the expiration of the original term of 40 years in consideration of the due payment of the annual premium, its investnientvalue at the end of 10 years to pay 4 per-cent, would be the present value of the sum assured at 4 per-cent interest less the present
value of the future premiums at the same rate. Hence, on this basis the required value per 100 assured $=100 v^{30}-1 \cdot 4 a_{30}$ at 4 per-cent $=30 \cdot 532-25 \cdot 177=5 \cdot 655$.

Consider now the elfect of assumptions (a) and (b) :
On assumption (a) the Policy could be converted into a Paid-up Policy of 25 per 100 originally assured, and the value of this reduced Policy at 4 per-cent would be $25 v^{30}$ which $=7 \cdot 70$ S.

On assumption (b) the policy could be surrendered at the end of 10 years for $95 \times 1.4\left(s_{11}-1\right)$ per 100 assured, where s_{11} is to be calculated at 2 per-cent, that is, for 14.554 .

In this case, therefore, the surrender-value would be nearly twice the 4 per-cent value of the Paid-up Policy, while the latter would be considerably in excess of the \pm per-cent investment-value of the original Policy on the basis of its being kept in force for the full sum assured until maturity.

These results indicate the importance of Paid-up Policy and SurrenderValue options in connection with Capital Redemption Policies.
(ii) A loan is made at 4 per-cent payable annually, and the principal is to be repaid by means of a 20-year Capital Redemption Policy, subject to an annual premium calculated on a net 3 per-cent basis. What is the actual rate of interest paid by the borrower on the entire transaction?

The value of $\mathrm{P}_{\overline{20}}$ at 3 per-cent is 03613 . Hence, in respect of each 100 advanced, the borrower pays 3.613 at the beginning of each year for a term of 20 years, by way of a premium to secure the repayment of the principal, and 4.000 at the end of each year, for the same period, by way of interest. The actual rate of interest which he pays on the whole transaction is consequently the value of i given by the equation

$$
100=4 a_{\overline{20}}+3 \cdot\left(613 a_{\overline{20}}\right.
$$

On solution of this equation by trial, it will be found that the required rate of interest is $4.6 \pm$ per-cent approximately.
(iii) Requircd the value, to pay interest at rate i on the basis of a Capital Redemption Assurance being effected to replace capital, of a leasehold property of the estimated net value of $l \mathrm{p}$ per annum for an unexpired term of n years.

Let K denote the required value.
The investment may be covered by a Policy maturing in either n or $n+1$ yeurs.
(a). Suppose an n-year assurance to be effected, and let S_{1} denote the sum to be assured, and P^{\prime} n the oflice rate of prenium per unit assured. Then, since the premium on the assurance is payable in advance, the investor's total initial outlay will be $\mathrm{K}+\mathrm{S}_{1} \cdot \mathrm{P}^{\prime} \bar{n}$. The anmual income from the property must suffice to pay interest on the total outlay and the renewal premium on the assurance.

Herce $\quad \mathrm{R}=\left(\mathrm{K}+\mathrm{S}_{1} \mathrm{P}^{\prime} \bar{n}\right) i+\mathrm{S}_{1} \mathrm{P}^{\prime} \bar{n}$.
At the end of the nth year, interest only will be payable (the last premium on the assurance having been paid at the beginning of the year out of the income received at the end of the $(n-1)$ th year), and there will consequently be a balance of income, amounting to $\mathrm{S}_{1} \mathrm{P}^{\prime} \bar{n}$, available, with the proceeds of the policy, to replace the total outlay; whence
and

$$
\begin{aligned}
\mathrm{S}_{1} \mathrm{P}_{n \mid}^{\prime}+\mathrm{S}_{1} & =\mathrm{K}+\mathrm{S}_{1} \mathrm{P}^{\prime} \bar{n} \\
\mathrm{~S}_{1} & =\mathrm{K} .
\end{aligned}
$$

It follows, therefore, from the first equation, that

$$
\mathrm{K}=\mathrm{S}_{\mathrm{L}}=\frac{\mathrm{R}}{\mathrm{P}_{n}^{\prime}(1+i)+i}=\frac{\mathrm{R} v}{\mathrm{P}^{\prime} \bar{n}+d}
$$

(b). Suppose an $(n+1)$-year assurance to be effected, and let S_{2} denote the sum to be assured, and $\mathrm{P}^{\prime} \overline{n+1}$ the office rate of premium per unit assured. Here, also, the total outlay is $\mathrm{K}+\mathrm{S}_{2} \mathrm{P}^{\prime} \overline{n+1}$, and

$$
\mathrm{K}=\left(\mathrm{K}+\mathrm{S}_{2} \mathrm{P}^{\prime} \overline{n+1}\right) i+\mathrm{S}_{2} \mathrm{P}^{\prime} \overline{n+1}
$$

but at the end of the $(n+1)$ th year, the proceeds of the poliey must provide a year's interest in addition to rephacing the total. outlay; whence

$$
\mathrm{S}_{2}=(1+i)\left(\mathbb{K}+\mathrm{S}_{2} \mathrm{P}^{\prime} \overline{n+1}\right)
$$

These equations lead to the results

$$
\mathrm{K}=\mathrm{R}\left(\frac{1}{\mathrm{P}^{\prime} \frac{1}{n+1}+d}-1\right)
$$

and

$$
\mathrm{S}_{2}=\frac{\mathrm{K}}{\mathrm{P}_{n+1!}^{\prime}+d^{\prime}}
$$

From the results obtained in (a) and (b), it appears that the price to be paid for an n-year annuity of 1 per annum to yield interest at rate i, on the basis of a Capital Redemption Poliey being effeeted te replace the invested capital, will be $\frac{v}{\mathrm{P}_{\bar{n} \mid+d}}$ or $\frac{1}{\mathrm{P}^{\prime} \frac{1}{n+1}+d}-1$ according as an assurance for n or $n+1$ years is effected, and that the sum to be assured will be, in the first case, the price paid, and in the second case the price paid inereased by a year's rent of the annuity. The expressions $\frac{v}{P^{\prime} n+d}$ and $\frac{1}{\mathrm{P}^{\prime} \overline{n+1}+d}-1$ will not, in general, be equal for office-values of $\mathrm{P}^{\prime}{ }_{\bar{n}}$ and $\mathrm{P}^{\prime} \overline{n+1}$. If, however, both premiums be net premiums calculated at the rate of interest i, then the two expressions become $\frac{v}{\mathrm{P}_{\bar{n}}+l}$ and $\frac{1}{\mathrm{P}_{\overline{n+1}}+l}-1$ respectively, and it may easily be shown that each is $=a_{n}$. It is clear that this is as it should be, for, under the special conditions contemplated, the assurances become merely sinking-funds, calculated and accumulated at the rate of interest employed in valuing the annuity.

As a numerical example, let it be required to find the price to be paid (allowing for income tax at $1 s$. in the $£$) for an improved ground rent of $£ 100$ per annum payable annually for 20 years, the investment being made to yield interest at 4 per-eent (less tax) and to admit of the replacement of capital by means of a 20 -year Capital Redemption Assurance at an annual premium of $£ 3.12 \mathrm{~s}$. 3 d . per-cent.

In this ease the formula obtained in (a) will be the one to be employed, and $i=038 ; \mathrm{R}=95$; and $\mathrm{P}^{\prime}{ }_{20}=\cdot 036125$. Hence the price to be paid $=$ the sum to be assured $=\frac{95}{1 \cdot 038 \times \cdot 036125+\cdot 038}=1,2.58 \cdot 316$

The annual premium on the policy $=1,258 \cdot 316 \times 036125=45 \cdot 457$
Total initial outlay $=1,303 \cdot 773$
Net income from ground rent, less tax $=$
95
Interest on $1,303 \cdot 773$ at 4 per-cent, less taz $\quad=49 \cdot 543$ Annual premium on policy
13. Throughout this chapter it has been assumed that the net premium for a Capital Redemption Assurance would be calculated on
the basis of a single uniform rate of interest. This, however, would not always be the case. In view of the difficulty of forecasting, with any certainty, the rate of interest likely to be obtainable on investments throughout the long periods over which many Capital Redemption Assurances extend, it is considered by some authorities that a decreasing rate of interest should be employed in the calculation of net premiums for such assurances. The assumption of an annual decrease in the rate leads to inconveniently complex formulas, and for practical purposes it is more usual to take a uniform rate of, say, 3 per-cent for the first ten or twenty years, a rate $\frac{1}{8}, \frac{1}{4}$, or $\frac{1}{2}$ per-cent lower for the next ten or twenty years, and so on, until a minimum of, say, 2 per-cent is reached.

Let it be required, for example, to calculate the annual premium for a Capital Redemption Assurance on the basis of 3 per-cent for the first twenty years, $2 \frac{1}{2}$ per-cent for the following twenty years, and 2 per-cent thereafter. Clearly for values of n less than 21 , the value of $\mathrm{P}_{\bar{n}}$ will be given by the ordinary formula $\frac{1}{s_{n+1}-1}$, where $s_{\bar{n}+1 \mid}$ is taken at 3 per-cent. For values of n between 21 and 40 ,

$$
\mathrm{P}_{\bar{n} \mid}=\frac{1}{s_{21 \mid}^{3 / 0}(1 \cdot 025)^{n-20}+s_{n-201}^{23 \%}}-1
$$

and, finally, for values of n exceeding 40 ,

$$
P_{n} \left\lvert\,=\frac{1}{s_{20}^{3010}}(1.025)^{20}(1 \cdot 02)^{n-40}+s_{20 \mid}^{\frac{29}{20}(}(1.02)^{n-40}+s_{n-40}^{2 \sigma_{0}}-1\right.,
$$

The net value of a poliey subject to a premium calculated on this basis would, of course, be found by accumulating the premiums paid at 3 per-cent up to twenty years from the inception of the assurance, at $2 \frac{1}{2}$ per-cent during the following twenty years, and at 2 per-cent thereafter.

CHAPTER VIII.

Interest Tables.

1. In the solution of Compound Interest problems-whether in the simpler problems involving merely the calculation, at a specified rate of interest, of the present value or amourt of a given capital sum or annuity, or in those of a more complex description, such, for example, as questions involving the determination of the rate of interest in a given financial transaction-much time and labour may often be saved by the use of Interest Tables, i.e., prepared tables showing the values of the elementary interest functions at various rates of interest. Many such tables are already in existence, but it may occasionally be necessary, for some practical purpose, to construct a table of some special function or to tabulate the values of one of the elementary functions at a special rate of interest or to a greater number of places of decimals than has been retained in any existing table. In studying the subject of Interest Tables it is necessary, therefore, to investigate the methods that may be employed in the construction of such tables, as well as to. acquire a knowledge of the mature and extent of the principal existing tables.
2. The functions whose values have been most generally tabulated are $(1+i)^{n}, c^{n}, s_{\bar{n}]}, a_{\bar{n}}, \frac{1}{s_{n}}$ and $\frac{1}{a_{n}}$ for various values of i and n. The values of both $\frac{1}{s_{n}}$ and $\frac{1}{a_{\bar{n}}}$ are given in some tables, but this has usually been considered unnecessary, since the values of either function can be readily obtained from those of the other by reference to the simple relation $\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}+i$.

Among other functions of which tables have been published may be mentioned $\log (1+i), \log \frac{i}{j_{(m)}}, \log j_{(m)}, \log (1+i)^{n}, \log v^{n}, \log \frac{1}{a_{n}}$, $\frac{s_{\bar{n}}}{1+i^{\prime} s_{\bar{n}},},(g-i) a_{\bar{n}}$.
3. In regard to the practical utility of any given set of tables of the elementary functions, the following points present themselves for consideration:-(i) the range and subdivision of the rates of interest for which the results are tabulated, (ii) the range of the values of n, (iii) the number of decimal places given in the results, (iv) the arrangement of the tables.
(i) The rates of interest of practice are usually nominal rates convertible half-yearly or quarterly. Now the present value or amount of 1 at rate j convertible m times a year is equal to the present value or amount of 1 at the effective rate $\frac{j}{m}$ for m times the given number of fears, and, similarly, the present value or amount of an annuity of 1 per anuum payable m times a year for n years at the nominal rate j convertible n times a year is equal to the present value or amount of an annuity of $\frac{1}{m}$ per annum payable annually for $n m$ years at the effective rate $\frac{j}{m}$. Hence it follows that, in practice, tables of the elementary functions are required for values of i ranging by small differences of $\frac{1}{5}$ th, or even $\frac{1}{16}$ th, from say 005 upwards.

In some tables the rates of interest range by larger differences, of say $\frac{1}{2}$ or $\frac{1}{4}$, from a minimum rate of 2 or 3 per-cent, but the values of the functions are given for each rate convertible half-yearly and quarterly as well as annually-the annuity payments, in the case of the functions $a_{\bar{n}} s_{\bar{n}}$ and $\frac{1}{a_{\bar{n}}}$ or $\frac{1}{s_{\bar{n}}}$, being assumed to be made with. corresponding frequency. Such tables answer much the same purpose as those constructed for a more extensive range of annual rates, except that they give the values only for integral numbers of years and not for integral numbers of half-years or quarters, unless, as in Corbaus's Tables, the values are specially given for each half-year in the case of a rate of interest convertible half-yearly, and for each quarter in the case of a rate convertible quarterly. For the valuation of Stock Exchange securities, and in the determination of the yield on such securities, it is
convenient to have the values of the elementary functions for each integral number of half-years or quarters. In general, tables constructed upon the first-mentioned plan, i.e., for effective rates ranging from a low initial value by very small differences, are probably the most useful.
(ii) The values of n generally range from 1 to 50,60 or 100 . Financial transactions do not, as a rule, extend over so long a period as 100 years. Hence, for tables at the higher rates of interest, say $3 \frac{1}{3}$ per-cent and upwards, the utility of which is practically limited to transactions in which a yearly rate of interest is involved, a range of 1 to 60 in the values of n is sufficient. But, as regards the tables at the lower rates (representing in practice half-yearly or quarterly rates), in which n will generally denote a number of half-years or quarters, a more extensive range is desirable; for example, in the valuation of Consols as at 5th April, 1900, at 2 per-cent convertible quarterly, the value of v^{92} or $a_{\text {92 }}$ for $i=005$ would be required. It will be obvious that a range of 1 to 100 in the values of n covers a period of 50 years for a nominal rate convertible half-yearly, and a period of 25 years for a nominal rate convertible quarterly. The value of any one of the elementary functions for a value of n beyond the limits of a given table may sometimes be conveniently found with the aid of the table. Suppose, for example, that it is required to find the value of v^{195} or $\overline{a_{195}}$ at a quarterly rate of interest, for the purpose of finding the yield on India 3 per-cent Stock as at 5th January, 1900, and that the available tables only go up to $n=100$. The required values may then be obtained by means of the relations

$$
v^{195}=v^{100} \times v^{95} ; a_{\overline{195}}=v^{100} a \overline{95 \mid}+a_{\overline{100 \mid}} .
$$

The results obtained in this way may not, of course, be correct to as many places of decimals as the values upon which they are based. Frequently, it will be found more convenient to calculate the required values from the appropriate formulas by logarithms.
(iii) For many practical purposes, tables giving the values of v^{n} to fire places of decimals and those of $a_{\bar{n}}$ to three or four places are sufficient But when large sums are involved, and it is required to obtain results correct to the nearest penny, greater accuracy is necessary. Suppose, for example, that it were required to find the annuity (payable halfyearly) to redeem a loan of $£ 100,000$ in 50 years, with interest at 4 per-cent, convertible balf-yearly. The value of $\frac{1}{a_{\overline{100}}}$ at 2 per-cent to
eight places of decimals is 02320274 , so that the half-yearly annuitypayment to the nearest penny would be $£ 2,320.5 s .6 d$. The value of $\frac{1}{a_{100}}$ to five places is 02320 . Hence the half-yearly payment, if calculated by a table giving the values of $\frac{1}{a_{n}}$ to five places only, would be $£ \Omega, 320$, which differs by $5 s .6 d$. from the correct result.
(iv) The principal objects to be attained in the arrangement of tables are (a) facility and celerity in use when numerous values have to be extracted, (b) minimization of the risk of error from the use of the wrong table, in case of an isolated reference.

The most important distinction in regard to arrangement is that in some tables the values of the several functions at each rate of interest are exhibited in parallel columns, whereas in others the values of each function at the various rates of interest are brought together. In the determination of an unknown rate of interest the latter arrangement is more conrenient.
4. In calculations in which great accuracy is required it may be necessary to determine the requisite values from the elementary formulas by means of logarithms. For this purpose the table of the values of $\log (1+i)$ to 15 places of decimals originally prepared by the late Mr. Peter Gray for the first edition of this work will be found useful, in conjunction with an extended logarithm table.

In order to minimize any risk of error from mistakes in printing or other causes, it is desirable to use independent tables for calculation and for checking. When only one table is available, it may sometimes be advisable to check independently by logarithms any values taken from the tables.
5. In the construction of Interest Tables it is usual to employ, when practicable, what is known as the Continued Process, i.e., a process by which each value of the function is obtained from the value next preceding or next following it. The advantages of this method of procedure are (i) that, in general, it entails much less labour than would be involved in the calculation of the values independently; (ii) that it admits of the whole of the results up to any given point being checked by the verification of the value last obtained, since that value depends on all those that precede it. On the other hand, an error in the calculation of any given value is carried forward by the Continued Process to every subsequent value, so that it is desirable to verify the results by an
independent check at short intervals-say, for every tenth value. Further, an error may be introduced by the accumulation of a small error resulting from the limitation of the number of decimal places retained in the calculations, but this can in many cases be obviated by a systematic adjustment; for example, in the construction of a table of $\log (1 \cdot 04)^{n}$ by repeated addition of $\cdot 01703$-this being the value of $\log 1.04$ to five places of decimals, while the value to seven places is $\cdot 0170333$-an error of, approximately, 1 in defect in the fifth place will arise in every three additions, but this may be eliminated by the addition of 1 at every third operation.
6. In the application of the Continued Process to the tabulation of the values of a given function it is necessary to have (i) an Initial Talue-upon which the subsequent values are based-(ii) a Working Formula, i.e., a formula connecting one value of the function with thenext, (iii) a Verification or Check Formula.

Thus, in the tabulation of the values of $a_{\bar{n}}$ for values of n from 1 to 100, $a_{\overline{100}}$ may be taken as the Initial Talue, $a_{\overline{n-1}}=(1+i) a_{\bar{n}}-1$ as the Working Formula, and $a_{\bar{n}}=\frac{1-v^{n}}{i}$ as the Verification Formula, to be applied to check every 10 th or 20 th value.
7. The principle that a series of values tabulated by a Continued Process may be checked by the verification of the value last obtained depends upon the assumption that each value is employed in the calculation of the next succeeding one. It must be remembered, therefore, that the efficacy of a check of this nature, as applied to a series of final values, is restricted to those cases in which each final value is actually used in the calculation of the next. For example, in the tabulation of $(1+i)^{n}$, by forming $\log (1+i)^{n}$ by repeated addition of $\log (1+i)$, and taking the antilogarithms of the results, the accuracy of the final value, say $(1+i)^{100}$, would not be any proof of the accuracy of the preceding values. It would prove only that the values of $\log (1+i)^{n}$ were correct. The values of $(1+i)^{n}$, having been separately obtained by taking antilogarithms, and not being employed in the Working Formula, would have to be checked by some other method; in fact, the Continued Process in this case is really used only in the calculation of the subsidiary values of $\log (1+i)^{n}$.
8. A very useful check, when the nature of the tabulated function is such as to admit of its being employed, is that obtained by the verification of the sum of the tabulated values. This cheek has the
alvantages of being equally efficacious, whether the values have been calculated separately or by a Continued Process, and of being applicable to the detection of mistakes in copying (or printer's errors in a proof), as well as to actual mistakes in calculation. When available, it may generally be applied to verify small scetions of the resulting values, as well as the final total.

In the tabulation, for example, of the values of v^{n}, the accuracy of any series of r successive values, begiming, say, with v^{m+1}, may be verified by seeing that their sum $=v^{m+1}+\ldots+v^{m+r}$, that is, $a_{\overline{m+r_{1}}}-a_{\overline{m i}}$ or $\frac{r^{m}-v^{m+r}}{i}$. In the application of this cheek formula, the values of v^{m} and v^{m+r} should, of course, be independently calculated.

In this comnection, the following relations will be useful:-

$$
\begin{aligned}
& \Sigma_{m+1}^{m+r}(1+i)^{n}=s_{\overline{m+r+1}}-s_{m+1} \\
& \Sigma_{m+1}^{m+r} e^{n}=a \overline{a_{m+r]}}-a_{\bar{m})} \\
& \Sigma_{m+1}^{m+r} \log (1+i)^{n}=\frac{r}{2}(2 m+r+1) \log (1+i) \\
& \Sigma_{m+1}^{m+r} \log v^{n}=\frac{r}{2}(2 m+r+1) \log v . \\
& \Sigma_{m+1}^{m+r} s_{n}^{\pi}=\Sigma_{m+1}^{m+r} \frac{(1+i)^{n}-1}{i}=\frac{s_{n+r+1}-s_{m+1}-r}{i} \\
& \Sigma_{m+1}^{m+r} a_{n}=\Sigma_{m+1}^{m+r} \frac{1-i^{n}}{i}=\frac{r-a_{m+r}+a_{\bar{n}}}{i} .
\end{aligned}
$$

The functions $\frac{i}{(1+i)^{n}-1}$ and $\frac{i}{1-c^{n}}$ do not admit of algebraical summation. Consequently, a cheek of this nature camnot be applied to tables of $\frac{1}{s_{\bar{n}}^{-}}$and $\frac{1}{a_{\bar{n}}^{-}}$-except for the purpose of verifying a copy or a printed proof, when the original calculations bave been previously checked by some other method.
9. An approximate check, which will sometimes be found useful, is atiorded by an inspection of the differences of the tabulated results. The differences between the successive valnes of any function should, in general, form a regular series, and as they will, as a rule, be comparatively small quantities, any error of importance in the tabulated values will
usually give rise to an obvious irregularity. Suppose, for example, that the amounts of an annuity of 1 per annum for 62 to 67 years at 4 percent were erroneously printed as $259 \cdot 451,270.829,252.662,295.968$, $308 \cdot 767$, and $321 \cdot 078$. An inspection of the differences- $11 \cdot 378$, $11 \cdot 833,13 \cdot 306,12 \cdot 799,12 \cdot 311$-would show at once that the difference between the third and fourth value is too large, while that between the fifth and sixth is too small, and on investigation it would be found that the fourth and fifth values should be $294 \cdot 968$ and $307 \cdot 767$, thus altering the differences to the regular series $11 \cdot 378,11 \cdot 833,12 \cdot 306,12 \cdot 799$, and 13.311 .
10. Tables of the values of $(1+i)^{n}, v^{n}, s_{n}$, and a_{n} mar, as a rule, be most easily constructed by actual multiplieation, by means of the Working Formulas

$$
\begin{aligned}
(1+i)^{n} & =(1+i)^{n-1} \times(1+i) ; \quad v^{n-1}=v^{n} \times(1+i) ; \\
s_{\bar{n}} & =s_{n-1}+(1+i)^{n-1} ; \quad \text { or } \quad(1+i) s \overline{n-1}+1 ; \\
a_{\bar{n}]} & =a_{\overline{n-1}}+v^{n} ; \quad \text { or } \quad(1+i) a_{\overline{n+1}}-1 ;
\end{aligned}
$$

the first or second formulas for s_{n} and a_{n} being applicable according as the functions $(1+i)^{n}$ and v^{n} have or have not been already tabulated.

If, bowever, the value of i be such that the operation of multiplying by $1+i$ would be unduly laborious, it may be more convenient to tabulate the logarithms of the functions by means of the Working Formulas

$$
\begin{aligned}
\log (1+i)^{n} & =\log (1+i)^{n-1}+\log (1+i) \\
\log v^{n} & =\log v^{n-1}-\log (1+i) \\
\log s_{\bar{n}} & =\log \left\{(1+i) s_{n-1}+1\right\} \\
\log a_{\bar{n}} & =\log (1+a \overline{n-1})-\log (1+i) .
\end{aligned}
$$

In applying the last two formulas it will be convenient-in order to ;ave the labour of taking antilogarithms at each operation-to use a table of Gauss's logarithms, in which the value of $\log (1+x)$ is found by entering the table with $\log x$. In the case of $\log s_{n}$, the modus operandi will be as follows:-Begin with $\log s_{1}$, the value of which is 0 , since $s_{1}=1$ for all values of i; obtain $\log (1+i) s_{1}$ by adding $\log (1+i)$ to $\log s_{1 \mid}$, and enter the table of Gauss's logarithms; the result will be $\log \left\{(1+i) s_{\overline{1}]}+1\right\}$ or $\log s \overline{2} ;$; again add $\log (1+i)$, obtaining $\log (1+i) s_{\overline{2},}$, and enter the table, which will give $\log \{(1+i) s \Xi+1\}$ or $\log s($; and so on. In the case of $\log a_{n}$, begin with $\log a_{\overline{1}}$, i.e., $\log v$; obtain $\log \left(1+a_{\overline{1}}\right)$ by entering the table, and deduct $\log (1+i)$, which will give
$\log \left(1+a_{\mathrm{i}}\right)-\log (1+i)$ or $\log a$ 司; enter the table with this result, and deduct $\log (1+i)$, thus obtaining $\log (1+a \overline{2})-\log (1+i)$ or $\log a \overline{3}$, and so on.

In each case the work may be facilitated by writing the constant quantity $\log (1+i)$ at the top of a moveable card for convenience in adding or subtracting at each operation, and a periodical adjustment mun.t be made, as explained in Art. 5, to eliminate the error resulting from the fact that the value of $\log (1+i)$ will be correct to the number of decimal places retained only.
11. The valucs of $\frac{1}{s_{n \mid}}$ and $\frac{1}{a_{n]}}$ may be tabulated cither from the values of s_{n} and a_{n} by taking reciprocals, or from $\log s_{n}$ and $\log a_{n}$ by taking the antilogarithms of the complementary logarithms. If the values of $\frac{1}{s \sqrt{n}}$ and $\frac{1}{a_{n}}$ were calculated independently, the relation $\frac{1}{a_{\bar{n}}}=\frac{1}{s_{\bar{n}}}+i$ would afford the most obvious and convenient method of checking the results. As already stated, however, it is not usual to tabulate both $\frac{1}{s_{n j}}$ and $\frac{1}{a_{\bar{n}}}$, since the value of one can be so easily obtained from that of the other, and the check in question would not, therefore, in general be applicable. In these circumstances the calculated values of $\frac{1}{s_{n}}$ or $\frac{1}{a_{n} \bar{n}}$, as the case might be, could be verified either by taking their reciprocals and comparing the results with the values of s_{n} or a_{n}, or by dividing i on the arithmometer by $(1+i)^{n}-1$ or $1-v^{n}$.

The values of $\frac{1}{s_{\bar{n} \mid}}$ and $\frac{1}{a_{\bar{n}}}$ could also be tabulated directly, with the aid of Gauss's logarithms, by means of the relations

$$
\begin{aligned}
& \log \frac{1}{s_{\bar{n}}}=\log \frac{1}{s_{\overline{n-1}}}-\log (1+i)-\log \left[1+\frac{1}{(1+i) s} \overline{\sqrt{n-1}}\right] \\
& \log \frac{1}{a_{\bar{n}}}=\log \frac{1}{a_{n-1}}+\log (1+i)-\log \left(1+\frac{1}{a_{n-1}}\right) .
\end{aligned}
$$

12. A table of the values of $P_{\bar{n}}$ at a given rate of interest may be constructed, as explained in Chap. VII, either by taking the reeiprocals of $\left(s_{n+1}-1\right)$ or by entering an Annual Premium Conversion Table with $a_{\overline{n-1}}$. In this connection it may be noticed that a Single Premium Conversion Table would, in theory, afford a simple means of checking a table of the values of a_{n}, since the result of entering the Conversion

Table with a_{n} should be v^{n+1}; in practice, however, this check would be of little value owing to the limitations of the Conversion Table in the matter of decimal places.
13. The values of $(1+i)^{\frac{r}{m}}$ and $v^{\frac{r}{m}}$, or of $s_{n}^{(m)}$ and $a_{n}^{\left(\frac{m}{n}\right)}$ at the effective rate i are not often required, but they could be tabulated, if necessary, by the continued methods indicated by the following formulas:-
cr
or

The formulas given above for $\log s_{n \mid}^{(m)}$ and $\log a_{n \mid}^{(m)}$ are adapted to the application of a table of Gauss's logarithms-the table being entered in the one case with $\log s_{n-1}^{(m)}+\log (1+i)-\log s_{1}^{(m)}$, and in the other with $\log a_{n-1}^{\left(\frac{m)}{}\right.}-\log (1+i)-\log a\left(\frac{(m)}{1 \mid}\right.$. In the ease of each of the four functions $(1+i)^{\frac{r}{m}}, e^{\frac{r}{m}}, s_{n}^{(m)}$, and $a_{n}^{(m)}$, a summation formula could easily be obtained to check the tabulated values.

Although the methods indicated above are of some interest as generalisations of the methods applicable to the functions $(1+i)^{n}, v^{n}$, $s_{\bar{n} \mid}$, and $a_{\bar{n} \mid}$, the most convenient methor of constructing tables of $s_{n \mid}^{(m)}$ and $a_{n \mid}^{(m)}$ in practice would probably be to multiply the values of $s_{\bar{n}}^{-1}$ and $a_{n \mid}$ (supposing these to have been already tabulated) by the factor $\frac{i}{j_{(m)}}$. The value of this function would generally be such as to admit of the values of $s_{n \mid}^{(m)}$ and $a_{n \mid}^{(m)}$ being obtained by direct multiplication with the aid of an extended multiplication table, but if the

$$
\begin{aligned}
& \log (1+i)^{\frac{r+1}{m}}=\log (1+i)^{\frac{r}{n}}+\frac{1}{m} \log (1+i) \\
& \log v^{\frac{r}{m}}=\log v^{\frac{r+1}{m}}+\frac{1}{m} \log (1+i) \\
& s_{n \mid}^{\langle m)}=s^{\left.\frac{(m)}{n-1} \right\rvert\,}+\frac{1}{m} \Sigma_{r=(n-1 m}^{r=n m-1}(1+i)^{\frac{r}{m}} \\
& \log s_{n_{1}^{\prime}}^{\left(\frac{m}{2}\right)}=\log s_{\overline{1}]}^{(m)}+\log \left[1+\frac{(1+i) s_{n-1}^{(m)}}{s_{n}^{(m)} \mid}\right] \\
& a_{n \mid}^{(m)}=a_{n-1}^{(m)}+\frac{1}{m} \Sigma_{r=(n-1) m+1}^{r=n m} v^{\frac{r}{n}} \\
& \log a_{n \mid}^{(m)}=\log a^{\left.\frac{(m)}{1} \right\rvert\,}+\log \left[1+\frac{v a_{n}^{\frac{(m)}{n}-1}}{a^{(m)}}\right] .
\end{aligned}
$$

logarithms of s_{n} and $a_{\bar{n} \mid}$ had been already tabulated, it might be found more convenient to construct $\log s_{n \mid}^{(m)}$ and $\log a_{n \mid}^{(m)}$ by the addition of the constant $\log \frac{i}{j_{(m)}}$, and to take antilogarithms. The logarithons could be verified by the relations $\leq \Sigma_{n \mid}^{(m)}=\frac{i}{j_{(m)}} \Sigma_{s_{n}}$, $\leq a_{n n_{1}}^{(m)}=\frac{i}{j_{(m)}} \leq a_{n \bar{n}}$, and the final results by summation formulas.
14. The amounts and present values of annuities at any given force of interest may be conveniently found by means of a table of the values of $\log \frac{e^{x}-1}{x}$. The application of such a table will be sufficiently indicated by the following relations:

$$
\begin{aligned}
& \log \overline{s_{\bar{n}}}=\log \frac{e^{n \delta}-1}{\delta}=\log \frac{e^{n \delta}-1}{n \delta}+\log n \\
& \log s_{n \mid}^{(m)}=\log \frac{e^{n \delta}-1}{m\left[e^{\frac{\delta}{n}}-1\right]}=\log \frac{e^{n \delta}-1}{n \delta}-\log \frac{e^{\frac{\delta}{\bar{n}}}-1}{\frac{\delta}{m}}+\log n \\
& \log s_{\bar{n}}^{-}=\log \frac{e^{n \delta}-1}{e^{\delta}-1}=\log \frac{e^{n \delta}-1}{n \delta}-\log \frac{e^{\delta}-1}{\delta}+\log n \\
& \log \overline{a_{n}}=\log e^{-n \delta \overline{s_{n}} \mid}=\log \frac{e^{n \delta}-1}{n \delta}+\log n-n \delta \log e
\end{aligned}
$$

\&c. \&e. \&c.
15. As an example of the construction of a table, let it be required to tabulate the values of $\frac{1}{a_{\bar{n}}}$ at $3 \cdot 1$ per-cent.

In this ease the working formula

$$
\log \frac{1}{a_{n}}=\log \frac{1}{a_{\overline{n-1}}}+\log (1+i)-\log \left(1+\frac{1}{a \overline{n-1}}\right)
$$

may conveniently be employed with the aid of Wittstein's Table of Gaussian logarithms, from which the values of $\log (1+x)$ may be found, with approximate accuracy, to seven places of decimals for all values of $\log x$ from $\overline{7} \cdot 0000000$ to $4 \cdot 0000000$. The value of $\log 1 \cdot 031$ to eight places is 01325567 . Hence, in working to seven places, it will be necessary to take the seventh figure as 7 in two cases out of every threc, and as 6 in the remaining case. Also, since the initial value $\log \frac{1}{a_{\overline{1}}}$ is $\log (1+i)$, which must be taken as 0132587 , it will be
best to take the seventh figure of $\log (1+i)$ in the working formula as successively $6,7,7$. The value of $\log \left(1+\frac{1}{a_{\overline{1}}}\right)$ will be found by entering Wittstein with $\log \frac{1}{a_{1}}$ or 0132557 , and that of $\log \frac{1}{a_{\text {2 }}}$ by adding $\log (1+i)$ to $\log \frac{1}{a_{\overline{1}}}$ and deducting $\log \left(1+\frac{1}{a_{\overline{1}}}\right)$ from the result. The addition and subtraction may be performed in a single operation, by a cross cast, the values of $\log \frac{1}{a_{\bar{n}}}$ and $\log \left(1+\frac{1}{a_{\bar{n}}^{\bar{n}}}\right)$ being placed in adjacent columns, and the value of $\log (1+i)$ being written at the edge of a moveable card. The values of $\frac{1}{a_{\bar{n}!}}$ will finally be obtained by taking the antilogarithms of the tabulated values of $\log \frac{1}{a_{\bar{n}}}$. The logarithmic work may be checked by a periodical calculation of $\log \frac{1}{\sigma_{\bar{n}}}$ from the formula $\log i-\log \left(1-v^{n}\right)$, and the final values by reciprocation and summation, or by comparison of their logarithms with the values of $\log \frac{1}{a_{n j}}$ from which they were obtained. The whole process is shown in the following specimen of the work:-

n	$\log \frac{1}{a_{\text {a }}}$	$\log \left(1+\frac{1}{a_{\bar{\prime}}}\right)$	$\frac{1}{a_{n \mid}}$	$a_{\text {a }}$
1	-0132587	-3077099	1.031000	-96993
2	1.7188074	-1828049	-523368	1.91070
3	1-5492612	-1316861	-354210	2.82318
4.	$1 \cdot 4308338$	-1036911	-269671	$3 \cdot 70822$
5	1-3404013	-0859960	-218978	$4 \cdot 56667$
6	$1 \cdot 26766.0$	-0737952	-185210	$5 \cdot 39928$
7	$1 \cdot 2071275$	-0615740	-161112	$6 \cdot 20686$
8	$\underline{1} 15551 \geqslant 1$	-0550682	-143058	$6 \cdot 99017$
9	$1 \cdot 1107026$	-05:7068	-129034	7•74990
10	1.0712545		-117830	$8 \cdot 45680$

$48 \cdot 81171$
$\log (1 \cdot 031)^{-10}=\overline{1} \cdot 8674133$, whence $r^{10}=7369080$;

$$
\log \frac{1}{a_{10}}=\log i-\log \left(1-v^{10}\right)=\overline{2} \cdot 4913617-\overline{1} \cdot 4201076=\overline{\overline{1}} \cdot 0712541
$$

whence $\quad a_{\overline{10} \mid}=8 \cdot 486833$ and ${\underset{\Sigma}{n=1}}_{n=10} a_{\bar{n}}=\frac{10-a_{\overline{10}}}{i} \quad . \quad=488118$

It will be observed that the values of $\log \frac{1}{a t(10)}$, as obtained $b y$ the working formula and the check formula respectively, differ in the seventh place of decimals. The discrepancy does not, however, affect the atcuracy of the tabulated value of $\frac{1}{a_{10}}$ to the sixth place. The more serious diserepancy between the values of $\beth_{\Omega_{n}}$, as obtained by actual summation and the summation formula respectively, is due mainly to the fact that the values of $\frac{1}{a_{\bar{n}}}$ have been cut down to six places before reciprocation, which throws out the values of a_{n} in the fifth place.

If it had been required to tabulate the values of $a_{\vec{n}}$ from an 8 -figure value of $\log 1.031$, it would have been better to use the formula $a_{\overline{n-1}}=(1+i) a_{\bar{n}}-1$, and to set out the work as follows :-

n	a_{n}	$a_{n!} \times{ }^{\circ} 03$	$a_{74} \times \cdot 001$	$\begin{aligned} & \left.\quad a_{n}\right\} \\ & \text { to five places } \end{aligned}$
10	8.156533	$\cdot 254605$	-008487	$8 \cdot 48683$
9	$7 \cdot 749925$	-232498	-007750	7•74993
8	6.990173	-209705	-006990	$6 \cdot 99017$
7	$6 \cdot 206868$	-186206	-006ะ07	$6 \cdot 20687$
6	5-399281	-161978	-005399	$5 \cdot 39928$
5	$4 \cdot 566658$	-137000	-004567	$4 \cdot 56666$
4	$3 \cdot 708225$	-111247	-003708	$3 \cdot 708: 3$
3	$2 \cdot 823180$	-084695	-002823	$2 \cdot 82318$
2	1.910698	-057321	-001911	1-91070
1	$\cdot 969930$	$\cdot 96993$

48.81178

Here the total agrees to the fourth place with the result obtained by the summation formula.
16. As a further example, let it be required to tabulate P_{η}, for values of n up to 20 , on the basis of a rate of interest falling by equal annual decrements from 035 in the 1st year to 0255 in the 20th year. Let $i_{1}, i_{2}, \& c$., denote the rates of interest for the 1 st, $2 \mathrm{nd}, \mathbb{E} \mathrm{c}$, years, so that $i_{1}=035, i_{2}=0345, i_{3}=\cdot 034, \& \mathrm{c}$. Then

$$
\mathrm{P}_{n i}\left[\left(1+i_{n}\right)+\left(1+i_{n}\right)\left(1+i_{n-1}\right)+\ldots+\left(1+i_{n}\right)\left(1+i_{n-1}\right) \ldots\left(1+i_{1}\right)\right]=1
$$

Hence $\log \frac{1}{\mathrm{P}_{n}^{\prime}}=\log \left(1+i_{n}\right)+\log \left(1+\frac{1}{\mathrm{P}_{n-1}}\right)$. A table of Gaussian
lo farithans inay, therefore, be conveniently employed, with $\log \frac{1}{\Gamma_{1}}$, that is, $\log \left(1+i_{1}\right)$, as the initial value. The results obtained by the working formula may be checked by an independent calculation of $\log \frac{1}{\mathrm{P}_{20}}$, but the values of $\log \left(1+i_{n}\right)$ and the final values of $\mathrm{P}_{\bar{n}}$ must be individually checked. The work will be as follows:-

n	$\log \left(1+i_{n}\right)$	$\log \left(1+\frac{1}{P n-1}\right)$	$\log \frac{1}{\mathrm{P}_{\bar{n}}}$	$\mathrm{P}_{\bar{n}}$	$\begin{aligned} & \log \left(1+i_{n}\right) . . \\ & \cdots\left(1+i_{20}\right) \end{aligned}$	$\begin{aligned} & \left(1+i_{n}\right) . \\ & \cdots\left(1+i_{20}\right) \end{aligned}$
1	-01494035		-0149104	$\cdot 96618$	-25881844	$1 \cdot 814757$
2	-01473049	-3085644	-3232949	$\cdot 47501$	-24387809	1.753389
3	-0145:054	-4920906	-5066111	-31145	-22914760	$1 \cdot 694914$
4	-01431048	-6243630	-6386735	-22979	-21462706	1-63915:
5	-01410032	-7285036	-7426039	-15088	-20031658	$1 \cdot 586049$
6	-01389006	-8148105	-8287006	- 14835	-18621626	$1 \cdot 535382$
7	-01367970	-8857764	-9024561	-12518	-17232620	$1 \cdot 457052$
8	-01346923	-9536791	-9671483	-10786	-15864650	$1 \cdot 4409+2$
9	-013:5867	1.0116323	1.0218910	-09443	-14517727	$1 \cdot 396939$
10	-0130 1800	1.0610789	1.0771269	-08373	-13191860	$1 \cdot 354936$
11	-01283723	1-1120474	1-1248846	-07501	-11887060	$1 \cdot 314833$
12	-012ヶ゙2635	$1 \cdot 1562969$	$1 \cdot 1689233$	-06778	-10603337	$1 \cdot 276537$
13	-01241537	$1 \cdot 1974035$	1-2098189	-06169	-09340702	$1 \cdot 239961$
14	-01220 130	$1 \cdot 2358147$	1-24S0190	-02649	-08099165	$1 \cdot 205013$
15	-01199311	1-2718849	1-283>780	-05201	-06578735	$1 \cdot 171622$
16	-01178183	1-3058996	$1 \cdot 3176814$	-01812	-05679424	1.139710
17	-01157014	1-3350921	$1 \cdot 3496625$	- 01470	$\cdot 04501241$	1-103206
18	-01135895	$1 \cdot 3686554$	1-3800144	- 01169	-03344197	1.050045
19	-01114736	1.3977510	1-4088984	-03900	-02208302	1.052163
20	-01093566	1-4255154	$1 \cdot 4364511$	-03661	-01093566	1.025500
$\frac{1}{\mathrm{P}_{: \overline{20}}}=27 \cdot 318132$						
$\log \frac{1}{\mathrm{P}_{\mathrm{e} 0}}=1 \cdot 4.364510$						

In the first column are written the values of $\log 1.035, \log 1.0345$; $\log 1.034, \& c$. The initial value, 0149104 , is then placed at the head of the third column ; the result of entering Wittstein with 0149404 is 3055614 , which is placed in the second column, and a cross addition gives 3232949 -the value of $\log \frac{1}{\mathrm{P}_{2}}$. This process is repeated to the end of the column. The values of $P_{n_{1}}$ are then obtained by taking the antilogarithms of the values of $\log P_{\bar{n}}$, the latter being read off mentally from the values of $\log \frac{1}{\Gamma_{n!}^{-1}}$ by deduction of the first six
decimals in $\log \frac{1}{P_{n}}$ from 9 and of the seventh from 10. The numbers in the fifth column are obtained by continuous addition of those in the first from the bottom upwards, and those in the final column by taking antilogarithms. Finally, the cast of the final column gives $\frac{1}{\mathrm{P}_{20}}$, and the logarithm of this-being found to agree with the last number in the third column-checks the work of the second and third columns. The logarithms of the first column and the antilogarithms of the fourth column must be checked, as already stated, by individual verification.
17. It remains now to give some account of existing Interest Tables. For this purpose it will be convenient to specify some of the more important tables, in order of date, and to indicate, so far as may appear necessary, their extent or special utility.

Join Lavrie.-"Tables of Simple and Compound Laterest." 1760.
This work contains, inter alia, tables of $\frac{1}{\mathrm{a}_{\bar{n}}}$ to 7 places of decimals for rates of interest proceeding by $\frac{1}{2}$ from 3 to 5 per-cent and for values of n from 1 to 50 .

Francis Corbaux. 1825.
These tables (which appear in the autlior's work on the "Doctrine of Compound Interest") give-in addition to results which will be found in a more convenient form in later works-the values of $\left(1+\frac{j}{4}\right)^{4 n},\left(1+\frac{j}{4}\right)^{-4 n}$,

$$
\frac{\left(1+\frac{j}{4}\right)^{4 n}-1}{j}, \frac{1-\left(1+\frac{j}{4}\right)^{-4 n}}{j} \text {, and } \frac{j}{1-\left(1+\frac{j}{4}\right)^{-4 n}} \text { for values of } j \text { pro- }
$$

ceeding by $\frac{1}{4}$ per-cent from 3 to 6 per-cent, and for values of n proceeding by $\frac{1}{4}$ from $\frac{1}{4}$ to 16 and by 1 from 16 to 100 . They practically give, therefore, for $n=1$ up to $n=61$, the values of the elementary functions at rates of interest proceeding by ${ }_{1} \frac{1}{5}$ from $\frac{3}{4}$ to $1_{\frac{1}{2}}^{\frac{1}{2}}$ per-cent. These results are given to 7 places of deeimals in the case of the 1st, 2nd, and 5th functions, 7 decreasing to 6 in the ease of the 3 rd , and 6 decreasing to 5 in that of the 4 th.
D. Joves.-"On Anunitics and Reversionary Payments." 184.

Vol. I of this work contains tables of $(1+i)^{n}$ and v^{n} to 8 places, s_{n} and a_{n}^{-1} to 6 places, $\frac{1}{a_{\bar{n} \mid}}$ to 8 places, and $\log v^{n}$ to 7 places, for all values of n from 1 to 100 , and for rates of interest procceding by $\frac{1}{2}$ from 2 to 5 per-cent and thence by 1 to 10 per-cent.
P. A. Vholeine.-"Nouvelles Tables pour les calculs d'Intérêts Simple et Composés, \&c." Denxième édition. 1854.
Some of the tables which were first published in this work have been reproduced in Spitzer's later and more extensive collection; the following, however, call for notice :-

$\begin{aligned} & \text { Table } \\ & \text { No. } \end{aligned}$	Function tilulated	n	$100 i$
XV1	$s_{n} \overline{1}$	1 to 100	1 by $\frac{1}{8}$ and $\frac{1}{6} u p$ to 6 , and thereafter by $\frac{1}{4}$ and $\frac{1}{3}$ to 10
XVII	s 同	1 to 12	$\frac{1}{1} \frac{1}{2}$ by $\frac{1}{24}$ to $\frac{11}{12}$ (except $\frac{13}{24}, \frac{17}{24}$ and $\frac{19}{2 \frac{9}{2}}$)
XVIII	$(1+i) s_{n}$	Do.	Do.
XX	$\frac{1}{a_{n}}$	1 to 100	Do.

The results are given generally to 8 places of decimals.
T. G. Rance.-"Compound Interest Tables." 1876.

These tables give the values of $(1+i)^{n}, v^{n}, s_{\bar{n} \mid}$ and $a_{\bar{n} \mid}$ to 7 places, for all values of n from 1 to 100 , at rates of interest proceeding by $\frac{1}{4}$ from $\frac{1}{4}$ to 10 per-cent.
Fedor Thoman.-"Theory of Compound Interest and Ammities" (translated) 1857.

In this work the functions $\log (1+i)^{n}$ and $\log \frac{1}{a_{n}^{-}}$are tabulated to 7 piaces. for all values of n from 1 to 100 , at rates of interest proceeding by $\frac{1}{2}$ to $1 \frac{1}{2}$, thence by $\frac{1}{8}$ to 6 , by $\frac{1}{4}$ to 7 , by $\frac{1}{2}$ to 8 , and finally by 1 to 12 per-cent. The values of $\log i, \log (1+i), \log ^{2}(1+i)$, and $\frac{1}{j_{(m)}}(m=2,4,6$, and 12), are also given to 7 or 10 places for an extensive range of rates of interest.
These tables (except the table of $\frac{1}{j_{(m)}}$) are reprinted in an Appendix to Inwood's Tables (30th edition, 1913), in which will be found tables of the elementary functions-generally to 5 places of decimals-and also tables of the values of $\frac{v^{n}}{i}, a_{\infty}^{\left(\frac{2}{n}\right)},{ }_{m i} \mid a_{n-m \mid}, \frac{s_{\bar{n}}}{1+i^{\prime} s_{n}}$, and $\frac{i}{j_{(m)}}$.

Lieut.-Col. W. H. Oakes.-"Tables for finding the Intermediate Rates of Interest in an Amnuity-Certain." 1887.
These tables are designed to facilitate the calculation of the unknown rate of interest by the first-difference interpolation formula $i=i^{\prime}-\left(i^{\prime}-i^{\prime \prime}\right) \frac{a-a^{\prime}}{a^{\prime \prime}-a^{\prime}}$. For each value of n from 1 to 100 the values of $a^{\prime} \vec{n}$ and $\frac{\cdot 125}{a^{\prime \prime} \bar{n}-a_{n}^{\prime} \bar{n}}$ are
given in parallel columns for each value of i^{\prime} proceeding by $\frac{1}{8}$ from $\frac{3}{4}$ to 10 per-cent. The values of a^{\prime} a are given to 5 places up to $n=13$, 4 places from $n=13$ to 15 , and 3 phaces from $n=26$ to 100 ; those of the multiplier generally to 3 places, but in certain sections of the table to 4 places.

Lieut.-Col. W. H. Oakes.-"Tables for finding the Half-yearly Rate of Interest from $1 \frac{1}{4}$ per-cent upwards, realized on Stock or Bonds, bearing $1 \frac{1}{2}, 1 \frac{3}{3}, 2$, $2 \frac{1}{4}, 2 \frac{1}{2}, 2 \frac{3}{4}$, and 3 per-cent Half-yearly Interest, issued at any premium and redeemable at par in any number of half-years not exceeding 60." 1889.
These tables give, to the nearest $1 d$., the values of $£ 100(g-i) a_{n}$ for $g=015$, $\cdot 0175, \cdot 02, \cdot 0225, \cdot 025, \cdot 0275$ and $\cdot 03, i=\cdot 0125, \cdot 013125, \cdot 01375, \ldots$ ($g-\cdot 00625$), and $n=3,4,5, \ldots 60$, together with the additions to the tabulated values corresponding to an increase of $1 d ., 2 d ., 3 d ., \ldots 1 s .3 d$. per-cent in the value of i.
S. Spitzer.—"Tabellen fiir die Ziuses-Zinsen und Renten-Rechnung. 4th edition. 1897.

These tables give (a) the values of $(1+i)^{n}, v^{n}, s_{\overline{n+1}}-1, a_{\bar{n}}$ and $\frac{1}{a_{\bar{n}}}$ for all values of n from 1 to 100 , at rates of interest proceeding by $\frac{1}{8}$ and $\frac{1}{6}$ from 0 to 6 per-cent, and thence by $\frac{1}{4}$ and $\frac{1}{3}$ to 10 per-cent, also at $3 \frac{1}{2} \frac{7}{\frac{7}{2}}$ per-cent (being 4 per-cent on 105), and at the rates of interest corresponding to the following rates of discount: 1, 2, $2 \frac{1}{4}, 2 \frac{1}{2}, 2 \frac{5}{6}, 2 \frac{3}{4}, 2 \frac{7}{8}, 3,3 \frac{1}{4}, 3 \frac{1}{2}, 3 \frac{3}{4}, 4 \frac{1}{2}, 5,5 \frac{1}{2}$, and 6 per-cent (122 rates in all); (b) the values of $\frac{1}{a_{n-1}}$ at the rates of interest corresponding to the rates of discount specified in (a), with the addition of 4 per-cent.
All the results are given to 8 places of decinals.
H. Murat.-"Tables d'Interêts Composés, de Depôts, de Rentes et d'Amortissements." 1901.

These tables give the values of $(1+i)^{n}, s \overline{n+1}-1$, and $\frac{1}{a_{\overline{2}}^{-1}}$ for $100 i=\frac{1}{2}$ to $2 \frac{1}{2}$ by increments of $\frac{1}{8}(n=1$ to 200$), 2 \frac{5}{8}$ to 3 by increments of $\frac{1}{8}$ ($n=1$ to 150), 3_{+}^{1} to $\frac{4}{4}$ by increments of $\frac{1}{4}(n=1$ to 150$)$, and $4_{4}^{\frac{1}{4}}$ to S by increments of $\frac{1}{4}(n=1$ to 100$)$; of \imath^{n}, a_{n} and $\frac{1}{\sqrt{n+1}-1}$ for the same range of values of $i(n=1$ to 100); and of the corresponding functions at rates of interest payable in adrance. Preceding the tables are 158 pp . of theory and examples.
T. R. Stcbbins. -"T'ables of the Present Values of Annuities." 1905.

The tables given in this work include a table of the present values (to 3 places of decimals) of an annuity of 1 per month at 3 to 8 per-cent per annum (by increments of $\frac{1}{2}$) convertible monthly.
A. Arsaudeau.-"Tables des Interêts Composés, Annuités et Amortissements." 1906.

These tables give the values of $(1+i)^{n}$ to 10 places of decimals and $\frac{1}{a_{\bar{n}}}$ to 7 places for $100 i=\frac{1}{2}$ to $?^{3}(n=1$ to 400$), 1$ to $2_{1}^{3} 0(n=1$ to 200$)$ and 3 to $G_{I^{\prime}}$ ($n=1$ to 100) ; also the values of v^{n} to 7 places for $100 i=2$ to $G_{1}{ }^{4} \bar{v}$ ($n=1$ to 100); of $a_{n]}$ to 6 places for $100 i=\frac{1}{2}$ to $\frac{9}{10}(n=1$ to 200$)$ and 1 to $6_{\frac{4}{10}}(n=1$ to 100$)$; and of $(1+i)^{\frac{n}{12}}$ for $100 i=1$ to $5 \frac{9}{90}(n=1$ to 12$)$. The rates of interest proceed in all cases by increments of $\frac{1}{10}$.
J. A. Arcuer.-"Compound Interest, Annuity and Sinking Fund Tables." 1907.

These tables give the values of $(1+i)^{n}$ and v^{n} to 10 places of decimals, and $s_{n_{1}}^{-1}, a_{\bar{n}}$ and $\frac{1}{a_{n}}$ to 8 places, for $100 i=1$ to $2(n=1$ to 200$)$ hy increments of $\frac{1}{16}, 2$ to $4(n=1$ to 100$)$ by increments of $\frac{1}{8}$ and 4 to $S(n=1$ to 50$)$ by increments of $\frac{1}{4}$.
J. Degncée.-"Table of Bond Values." 1908.

This work gives the values per-cent, to yield any rate convertible half-yearly from ${ }^{2}$ to 6 per-cent by increments of $\frac{~_{2}^{2}}{2}$ and $\frac{1}{8}$, of a Bond bearing interest at $2 \frac{1}{2}, 3,3 \frac{1}{2}, 4,4 \frac{1}{2}, 5$ or 6 per-cent payable half-yearly and redeemable in $\frac{1}{2}$ to 50 years by increments of $\frac{1}{2}$ and in $52 \frac{1}{2}$ to 100 years by increments of $2 \frac{1}{2}$; also the corresponding values for quarterly dividends and yields, and some sapplementary tables. The values are tabulated to 4 places of decimals.
D. M'Kıe.-"Tables of Compound Interest and Annuities." 1911.

These tables give the values of $\tau^{n}, a_{\bar{n}},(1+i)^{n}$ and $s_{\bar{n}}$ to 9 places of decimals for $100 i=\frac{1}{16}$ to 3 by increments of $\frac{1}{16}$, and for $n=1$ to 120 ; also the values of $\frac{1}{a_{n}}$ to 7 places for $100 i=\frac{1}{8}$ to 3 by increments of $\frac{1}{8}$, and for $n=1$ to 60 .
Lieut.-Col. W. H. Oakes.--"Tables of Compound Interest." 1912.
These tables give the values of $(1+i)^{n}, v^{n}, s_{n i}$ and a_{n} to 5 places, for all values of n from 1 to 100, at rates of interest proceeding by $\frac{1}{8}$ from $\frac{3}{4}$ to 10 per-cent.
E. Peleme.-"Tables de l'Interêt compusé." 1912.

This work includes tables of $(1+i)^{n}$ to 10 places of decimals, v^{n} to 7 places, a_{n} to 7 places, and a_{n} to 8 places for $100 i=\frac{1}{2}$ to $\frac{13}{8}(n=1$ to 300$)$ by increments of r^{2}, in addition to numerous other tables at rates of interest proceeding by larger increachts.
In addition to the foreroing, the following special tables may be mentioned:-
W. S. B. Woolnotse's Tables of the values of δ and $\log \delta$, to 5 places of decimals, for values of i proceeding by $\frac{2}{2}$ from $\frac{1}{2}$ to 10 per-cent. J.I.A., xv, 125.
W. H. Makemam's Table of the values of $\log \frac{e^{x}-1}{x}$ to 7 places of decimals for values of x proceeding by 01 from 0 to 104 with supplementary columns ly which the values of the function for intermediate values of x may be calculated. J.I..1., xv, 437.
D. J. McG. McKenzie's Tables of the values of $\log \frac{m i}{j_{(m)}}$ (to 7 places) and $\frac{j_{(m)}}{m}$ (to 8 increasing to 10 places) for $m=2,4,12,26,52$ and ∞, at rates of interest procceding by $\frac{1}{8}$ from $2 \frac{1}{2}$ to 10 per-cent. J.I.A., xxiii, 183-4.
P. Grar's Table of the values of $\log _{10}(1+i)$ to 15 phaces of decimals for values of i procceding by $\frac{1}{10}$ from 0 to 10 per-cent. First Edition of this Work, pp. 166-7.

Interest Tables of limited extent will be found in many text-books and works of reference. A few tables, reproduced from the "Short Collection of Actuarial Tables', printed by the Institute of Actuaries for examination purposes, are appended to this work for the convenience of students.

CHAP'TER IX.

Formulas of tie Infinitesimal Calculus.

1. In the investigations of the following chapter an elementary knowledge of the notation and methods of the Calculus of Finite Differences and the Infinitesimal Calculus will be required. For the elements of the Calculus of Finite Differences, reference may be made to Part II of the Text-Book; in the present chapter it is proposed to give some account of the elementary methods of the Infinitesimal Calculus.
2. The Infinitesimal Calculus is practically restricted in its applications to functions which possess (it may be within certain limits) the property of continuity, and it will be necessary, therefore, to consider in the first instance the nature of a continuous function.
3. A quantity or magnitude is said to admit of continuous variation between certain limits when any intermediate value may be assigned to it between those limits. Thus, in the expression v^{t}, denoting the present value, at the effective rate of interest i, of 1 receivable at the end of t years (where t may be either integral or partly integral and partly fractional), the index t admits of continuous variation between 0 and any positive finite valuc, and over any given range of say n years an infinite number of different values may be assigned to it, each successive value differing from the preceding one by an infinitely small quantity.
4. A quantity which does not admit of variation is called a constant quantity. Thus, in the illustration given in the preceding article, if in a given problem the rate of interest be fixed, the quantity v will be a constant for the purposes of that problem. On the ciher hand,
the expression v^{t} might, for the purposes of some other problem, be used to denote the present value, at any effective rate of interest within certain limits, of 1 receivable at the end of a fixed term of t years; in that ease t would be a constant, and v would admit of continuous variation within the specified limits.
5. One variable quantity is said to be a function of another when, if any other quantities involved in the expression of the former in terms of the latter remain unchanged, the value assigned to the latter determines the value of the former. Thus, v^{t} is a function of t, beeause for a given constant rate of interest i its value is determined by the value of t. Similarly, v^{t} is a function of v or i, because for a given constant value of t its value is determined by the value assigned to v or i.
6. When one variable quantity is a function of another, the latter is ealled the independent variable, and the former the dependent variable. In investigations of a general character, the independent and dependent variables are usually denoted by x and y respectively, and the relation between them is expressed in some such form as $y=f(x), y=F(x)$, or $y=\phi(x)$. Here x is the independent variable, and y is the dependent variable, and the value of the latter ean be determined for any given value of the former, if the form of the function f, F, or ϕ, be known.
7. A function $f(x)$ is said to be a continnous function of x for all values of x between the limits a and b when, for each value of x between those limits, (i) $f(x)$ has a finite value, and (ii) an infinitely small change in the value of x produces an infinitely small change in the value of $f(x)$.

For example, v^{t} is a continuous function of t between any finite limits, for it assumes a finite value for any assigned finite value of t, and, further, the change of $v^{t}\left(v^{h}-1\right)$, produced in its value by a change of h in the value of t, becomes infinitely small when h is indefinitely diminished.
8. If $f(x)$ be a continuous function of x for all values of x between $x=a$ and $x=b$, then, since each infinitely small change in the value of x produces an infinitely small change in the value of $f(x)$, it follows that as x elhanges from a to $b, f(x)$ must assume at least once every intermediate value between $f(a)$ and $f(b)$. It may be noted also, as a neeessary consequence of this, that if $f(a)$ and $f(b)$ have different signs, there must be some value of x between
a and b for which $f(x)=0$, for in changing from a positive to a negative value the function must pass through zero.
9. A continuous function may be represented geometrically in the following way:-

Let $O A$ and $O B$ be measured to the right along $O X$ to represent a and b respectively, and let the ordinates $A M$ and $B N$ be erected at right angles to $O X$ to represent (on a proportionate scale) $f(a)$ aud $f(b)$ respectively. Then, if $f(x)$ be a continuous function of x from $x=a$ to $x=b$, it follows from the definition in Art. 7 that $f(x)$ has a finite value for each value of x intermediate between a and b. Hence, if OC represent any such intermediate
 value of x, an ordinate $C Q$ may be drawn to represent (on the same scale as before) the corresponding value of $f(x)$. Suppose an infinitely large number of such ordinates to be drawn to represent the successive values assumed by $f(x)$ as x passes by infinitely small inerements from the value a to the value b. Then it is clear from what has been said in Art. 8 that the ends of these ordinates would form a continuous chain of points from M to N. This chain of points, or curve, forms a geometrical representation of the function $f(x)$ from $x=a$ to $x=b$.
10. It would not, of course, be possible to actually construct the curve representing any given function by the method just indicated. There are, however, certain special functions-such, for example, as those represented by a straight line, a circle, and an ellipse-for which a continuous curve may be drawn by some mechanical contrivance. Moreover, the general course of any function may often be indicated with sufficient accuracy for practical purposes by erecting a number of ordinates for various values of the independent variable, and drawing a freehand curve through their ends.

Take, for example, the function $(1+i)^{t}$.
At the point O in the line $X^{\prime} O X$ erect an ordinate $O B$ to represent unity-or, what is the same thing $(1+i)^{\circ}$. Take $O A_{1}$, $A_{1} A_{2}, A_{2} A_{3}$, \&e., to the right along $O X$, and $O a_{1}, a_{1} a_{2}, a_{2} a_{3}$, \&c., to the left along $O X^{\prime}$ each $=O B$ or unity, and erect the ordinates
$A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$, \&e., to represent $(1+i),(1+i)^{2},(1+i)^{3}$, \&c., respectively, and the ordinates $a_{1} b_{1}$, $a_{2} \quad b_{2}, \quad a_{3} b_{3}, \& c$., to represent v, v^{2}, v^{3}, \&.., respectively. Then the points . . . $b_{3}, b_{2}, b_{1}, B, B_{1}, B_{2}$, B_{3}, \ldots lie on the chain of points, or curve, representing the function $(1+i)^{x}$, and some idea of the general course of the function may be gathered by drawing a freehand curve through these points as shown in the diagram.

It will be readily seen that the ordinate of the curve tends, ultimately, to become zero in the direction $O \mathrm{X}^{\prime}$ and infinitely great in the direction 0 X .
11. The diagram given in the last article may be further utilized for the purpose of obtaining a geometrical representation of the functions s, n, $s_{\bar{n} \mid}^{(m)}, \bar{s}_{\bar{n}}, a_{\bar{n}}, a_{n^{\prime}}^{(m)}$, and $\overline{a_{\bar{i}}}$. For, let perpendiculars $B K_{1}, B_{1} \Pi_{2}, B_{2} \Pi_{3}$, dc., be drawn from B, B_{1}, B_{2}, Sc., to $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$, \&e., and let perpendiculars $b_{1} k, b_{2} k_{1}, b_{3} k_{2}$, Sc., be drawn from b_{1}, b_{2}, b_{3}, \&c., to $O B, a_{1} b_{1}, a_{2} b_{2}$, \&c. Then, since $O A_{1}, A_{1} A_{2}, A_{2} A_{3}$, \&e., $O a_{1}, a_{1}$ $a_{2}, a_{2} a_{3}, \& c$., are all equal to unity, and the ordinates $O B, A_{:} B_{\mathrm{i}}, A_{2} P_{i}$, \&c., $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}$, \&c., respectively represent $1,(1+i),(1+i)^{2}, \mathcal{S c} ., v, v^{2}$, x^{3}, \&c., it is clear that the rectangles $\digamma_{1} O, \Pi_{2} A_{1}, \hbar_{3}^{-} A_{2}, \& c$., represent geometrically the products of unity, and $1,(1+i),(1+i)^{2}, \& c$. , and that the rectangles $k a_{1}, k_{1} a_{2}, k_{2} a_{3}$, \&c.,
 represent geometrically the products of unity and $v, v^{2}, v^{3}, \& c$.

Hence, if $\dot{O} A_{n}$ and $O a_{n}$ be measured to the right and left respectively of O, cach $=n O B$ or n, and if a rectangle be constructed on each unit of the bases $O A_{n} O a_{n}$ in the same manner as those constructed in the diagram, the total area contained by the n rectangles constructed on $O A_{n}$ will represent $1+(1+i)+(1+i)^{2}+\ldots$ $+(1+i)^{n-1}$ or s_{n}, and the total area contained by the n rectangles constructed on $O a_{n}$ will represent $v+v^{2}+r^{3}+\ldots+v^{n}$ or $a_{\bar{n}}$.

Next, let each of the bases $O A_{1}, A_{1} A_{2}, O a_{1}, a_{1} a_{2}$, de., he divided into m equal parts, let ordinates be drawn to the curve from the points of sub-division, and let a new series of rectangles beconstructed by drawing perpendiculars from the point at which each ordinate meets the curve to the next succecding ordinate to the right. Then the ordinates to the right of $O B$ will be respectively equal to $(1+i)^{\frac{1}{n}},(1+i)^{\frac{2}{n}},(1+i)^{\frac{3}{n}}$, \&e. $\ldots(1+i)^{n-\frac{1}{m i}}$, and those to the left of $O B$ will be respectively equal to $v^{\frac{1}{m}}, v^{\frac{2}{m}}, v^{\frac{3}{n}}$, \&c. . . r^{n}. Hence, since the bases of the new series of rectangles are all $=\frac{1}{m}$, the total area contained by the new rectangles now construeted on the base $O A_{n 2}$ will represent

$$
\frac{1}{m}\left[1+(1+i)^{\frac{1}{n}}+(1+i)^{\frac{2}{m}}+\ldots+(1+i)^{\left.n-\frac{1}{m}\right] \text { or } s_{n}^{(m n)}, ~ ; ~, ~}\right.
$$

and the total area contained by the new rectangles constructed on $O a_{n}$ will represent

$$
\frac{1}{m}\left(v^{\frac{1}{n}}+v^{\frac{2}{n}}+\ldots+v^{n}\right) \text { or } a_{n}^{(m)} .
$$

If now m be indefinitely increased, the area contained by the resulting series of rectangles on the base $O A_{n}$ will ultimately coincide with the ligure contained by $O B, O A_{n}, A_{n} B_{n}$, and the intercepted portion of the curve, and, similarly, the area contained by the rectangles on the base $O a_{n}$ will ultimately coincide with the figure contained by $O B, O a_{n}, a_{n} b_{n}$, and the intercepted portion of the curve. But, if m be indefinitely increased, $s_{\bar{n}}^{(m)}$ becomes $\bar{s}_{\bar{n}}$, and $a_{n}^{(m)}$ becomes $\bar{a}_{\bar{n}}$. Hence, the area bounded by $O B, O A_{n}, A_{n} B_{n}$ and the curve geometrically represents \bar{s}_{n}, and the area bounded by $O B, O a_{n}, a_{n} b_{n}$ and the curve geometrically represents \tilde{u}_{n}.
12. The foregoing explanation of the nature of a continuous function may assist the student to understand the general character
of the problems to which the methods of the Infinitesimal Calculus are more particularly adapted.

The ordinary arithmetical or algebraical Calculus and the Calculus of Finite Differences furnish methods of dealing with the values of a function corresponding to any specified values of the independent variable, and with the changes in the value of the function resulting from any finite changes in the value of the independent variable. The Infinitesimal Calculus, on the other hand, affords a means of dealing with problems in which account has to be taken of all the values assumed by a function in passing from the value corresponding to one value of the indepeudent variable to that corresponding to another, or of the change in the value of the function corresponding to an infinitely small change in the value of the independent variable. The Differential Calculus deals primarily with the latter class of problems, the Integral Calculus with the former.
13. When a variable quantity changes from one value to another, the amount by which the latter value exceeds the former is called the increment of the quantity. An increment in the value of the independent variable x is frequently denoted by $h, \Delta x$, or δx, and the corresponding increment in the value of the dependent variable y by $k, \Delta y$, or δy.
14. Let y be a continuous function of x for all values of x between certain limits; within those limits let x receive an increment h, and let the corresponding increment in y be k, so that, if $y=f(x)$,

$$
y+k=f(x+h)
$$

and

$$
k=f(x+h)-y=f(x+h)-f(x) .
$$

Then it is clear that the rate of change of y corresponding to ar infinitely small increment of x will be measured by the limiting value, when $h=0$, of $\frac{k}{h}$ or $\frac{f(x+h)-f(x)}{h}$. This limiting value is called the first derived function or differential coefficient of y according to x, and is denoted by $f^{\prime}(x)$, or $\frac{d y}{d x}$, or $\frac{d f(x)}{d x}$.

Thus, $f^{\prime}(x)$ or $\frac{d y}{d x}=\operatorname{Lit} t_{h=0} \frac{f(x+h)-f(x)}{h}$.
The identity $\frac{d y}{d x}=f^{\prime}(x)$ may be written in the form

$$
d y=f^{\prime}(x) d x .
$$

with the meaning that the limiting value of the ratio of Δy to $f^{\prime}(x) \Delta x$ is unity.
15. A geometrical interpretation of the differential coefficient of a function may be obtained in the following way:-Let the curve in the annexed diagram be the curve representing the function $f(x)$, and let $O A=x$, so that the ordimate $A M$ represents y or $f(x)$. Take $A B=h$ and draw the ordinate $B N$. Then $B N=y+k$ or $f(x+h)$. Draw $M Q$ perpendieular to $B N$, join
 $\checkmark M$ and produce it to eut $O X$ in R. Then $N Q=k$, and $\frac{N Q}{N Q}$ or $\frac{N B}{B R}=\frac{k}{h}$ or $\frac{f(x+h)-f(x)}{h}$. Now suppose h to be indefinitely diminished. Then the points B and N nove up to the points A and $\Omega[$ respeetively, and the line $N M K R$ tends towards a limiting position $M T$, say, and becomes a tangent to the curve at the point $A \Gamma$. Hence, the limiting value of $\frac{f(x+h)-f(x)}{h}$ is $\frac{A M I}{A T}$, where $M T$ is a tangent to the curve at the point Mr. In .ymbols $\frac{d y}{d x}$ or $f^{\prime}(x)=\frac{A M I}{A \bar{T}}$.
18. The greater the value of $f^{\prime}(x)$, the greater will be the ratio $\frac{A M}{A T}$, and the greater, consequently, the angle which the tangent to the eurve makes with $O X$. It appears, therefore, that the differential coeffieient affords a measure of the gradient or steepness of the curve at any given point.

It is evident, also, that a small inerement in the value of x will produce an inerement or deerement in the value of y aecording as $f^{\prime}(x)$ is positive or negative. Hence, if $f^{\prime}(x)$ is positive for all values of x over a given range, then $f(x)$ increases with x throughout that range, and, conversely, if $f^{\prime}(x)$ is negative for all values of x over a given range, then throughout that range $f(x)$ decreases as x inereases. Again, if $f^{\prime}(x)$ is positive for all values of x throughout a certain range
up to $x=a$, and negative for all greater values of x throughout a certain range, or, in other words, if $f^{\prime}(x)$ changes from positive to negative as x passes through the value a, then $f(x)$ increases with x up to $x=a$, and then decreases. Similarly, if $f^{\prime}(x)$ changes from negative to positive, as x passes through the value a, then $f(x)$ decreases as x inereases up to $x=a$ and then increases. Now, as explained in Art. \&, in changing from positive to negative, or from negative to pusitive, $f^{\prime}(x)$ must pass through zero. Hence, if $f(x)$ increase with x up to $x=a$ and thereafter decrease, or vice versa, $f^{\prime}(a)=0$. When a function increases up to a certain value of the independent variable and then decreases, it is said to have a maximum value, or to be a maximum for that value of the variable; and when it decreases as the variable increases up to a certain value and then increases, it is said to hare a minimum value, or to be a minimum for that value of the variable. The result just obtained may, therefore, be expressed in the statement that, if $f(x)$ is a maximum or minimam for $x=a, f^{\prime}(a)=0$. It will be shown hereafter, analytically, that this is a neeessary condition, although not the only necessary condition, for the existence of a maximum or minimum.

Geometrically, it will be obvious that the equation $f^{\prime}(\mu)=0$ expresses the condition that the tangent to the curve at the point corresponding to the value a of x should be parallel to $O X$, and it is elear that this will be the case at any point at which the curve attains a maximum or minimum distance from $O \boldsymbol{X}$, at which, that is to say, $f(x)$ is a maximum or minimum.
17. The operation of finding the differential coefficient of a function is called differentiating the function. Any given function which admits of differentiation may be differentiated from first prineiples by finding the limit of the expression $\frac{f(x+h)-f(x)}{h}$ when $h=0$, but the process may in many cases be simplified by the aid of the following general rules :-
(i) The differential coefficient of a constant is zero.

This is obvious, since a change in the independent variable does not produce any corresponding change in a constant.

Hence, additive or subtractice constants (as distinguished from constants involved as coefficients or indices of variable quantities) disappear on differentiation.
(ii) The differential coefficient of the algebraic sum of a number of functions is the sum of the differential coefficients of the several functions.

Let $y=u+v+w \ldots$, where $u, v, w \ldots$ are functions of x.
Then, if $\Delta y, \Delta u, \Delta x, \Delta w \ldots$ are the increments of $y, u, v, w \ldots$ corresponding to an increment of Δx in x,

$$
y+\Delta y=u+\Delta u+v+\Delta v+w+\Delta w+\ldots
$$

whence

$$
\Delta y=\Delta u+\Delta v+\Delta u+\ldots
$$

and

$$
\frac{\Delta y}{\Delta x}=\frac{\Delta u}{\Delta x}+\frac{\Delta v}{\Delta x}+\frac{\Delta w}{\Delta x}+\ldots
$$

which becomes in the limit, when Δx is indefinitely diminished,

$$
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}+\ldots
$$

(iii) The differential coefficient of the product of two functions is the sum of the products of each function and the differential coefficient of the other.

Let

$$
y=u v
$$

where u and v are both functions of x.
Then

$$
\begin{aligned}
\Delta y & =(u+\Delta u)(v+\Delta v)-u v \\
& =u \Delta v+v \Delta u+\Delta u \cdot \Delta v \\
& =u \Delta v+(v+\Delta v) \Delta u
\end{aligned}
$$

and

$$
\frac{\Delta y}{\Delta x}=u \frac{\Delta v}{\Delta x}+(v+\Delta v) \frac{\Delta u}{\Delta x}
$$

whence, in the limit, since $v+\Delta v$ becomes r,

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

If v be a constant, C say, so that $y=\mathrm{C} u$, then by rule (i) it. differential coefficient vanishes, and $\frac{d y}{d x}=\mathrm{C} \frac{d u}{d x}$.
(iv) The differential cocflicient of the product of any number of functions is the sum of the products of the differential coefficient of each fuuction and the remaining functions.

Let

$$
y=u \cdot v .
$$

Put $v w=z$. Then $y=u z$
and

$$
\frac{d y}{d x}=u \frac{d z}{d x}+z \frac{d u}{d x} .
$$

But since

$$
\begin{aligned}
& \approx=v u, \frac{d z}{d x}=v \frac{d v}{d x}+w \frac{d v}{d x} \\
\therefore \quad \frac{d y}{d x} & =u v \frac{d v}{d x}+v u \frac{d u}{d x}+w u \frac{d v}{d x} .
\end{aligned}
$$

This result may be written in the form-

$$
\frac{1}{y} \frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{v} \frac{d v}{d x}
$$

and can obviously be extended to the product of any number of functions.
(v) The differential coefficient of the quotient of two functions is the result obtained by deducting the product of the numerator and the differential coefficient of the denominator from the product of the denominator and the differential coefficient of the numerator, and dividing by the square of the denominator.

Let

$$
y=\frac{u}{v}
$$

Then

$$
\begin{aligned}
& \Delta y=\frac{u+\Delta u}{v+\Delta v}-\frac{u}{v}=\frac{v \Delta u-u \Delta v}{v(v+\Delta r)} \\
& \frac{\Delta y}{\Delta x}=\frac{v \frac{\Delta u}{\Delta x}-u \frac{\Delta v}{\Delta x}}{v(v+\Delta x)}
\end{aligned}
$$

and, in the limit,

$$
\frac{d y}{d x}=\frac{1}{v^{2}}\left(v \frac{d u}{d x}-u \frac{d x}{d x}\right)
$$

This result may be written in the symmetrical form-

$$
\frac{1}{y} \frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x}-\frac{1}{v} \frac{d v}{d x}
$$

(vi) The differential coeflicient of y according to x, where y is a function of u and u is a function of x, is the product of the differential coefficients of y according to u and u according to x.

For let Δy and Δu be the increments of y and u corresponding to an increment of Δx in x.

Then

$$
\frac{\Delta y}{\Delta x}=\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} \text { identically, }
$$

whence, in the limit,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

18. It is now necessary to determine the differential coefficients of those functions which occur most commonly, alone or in combination, in practice. Most of these must be deduced from first principles.
(i) To find the differential coefficient of a rational power.

Let $y=x^{n}$, and first let n be integral.
Then

$$
\begin{aligned}
\frac{d y}{d x} & =\operatorname{Lt}_{h=0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\operatorname{Lt}_{h=0}\left[n x^{n-1}+\frac{n(n-1)}{2!} h x^{n-2}+\ldots+h^{n-1}\right]
\end{aligned}
$$

The terms after the first, being finite in number, vanish when h becomes infinitely small.

Hence, if n be integral, $\frac{d y}{d x}=n x^{n-1}$. Next, let n be fractional, and $=\frac{r}{s}$ where r and s are both integral. Then $y^{s}=x^{r}$.

Now, by the result just obtained,

$$
\frac{d\left(y^{s}\right)}{d y}=s y^{s-1}=s x^{\frac{r(s-1)}{s}} \text { and } \frac{d\left(x^{r}\right)}{d x}=r x^{r-1}
$$

and, by Art. 17 (vi),

$$
\frac{d\left(y^{s}\right)}{d x}=\frac{d\left(y^{s}\right)}{d y} \cdot \frac{d y}{d x}
$$

Hence

$$
\frac{d y}{d x}=\frac{1}{s x^{\frac{r(s-1)}{s}}-} \cdot r \cdot x^{r-1}=\frac{r}{s} \cdot x^{\frac{r}{s}-1}
$$

Lastly, let n be negative and $=-t$.
Then $y=\frac{1}{x^{t}}$.

Now, by Art. 17 (v),

$$
\frac{d\left(\frac{1}{x^{t}}\right)}{d x}=\frac{-\frac{d\left(\cdot x^{t}\right)}{d x}}{x^{2 t}}
$$

which, since t is positive, $=\frac{-t x^{t-1}}{x^{-2 t}}=-t x^{-(t+1)}$;

$$
\therefore \quad \frac{d y}{d x}=-t x^{-(t+1)} .
$$

Hence, if n be any rational quantity, positive, negative, or fractional,

$$
\frac{d\left(x^{n}\right)}{d x}=n x^{n-1} .
$$

(ii) To find the differential coefficient of an exponential.

Let $y=e^{x}$.
Then

$$
\frac{d y}{d x}=\operatorname{Lt}_{h=0} \frac{e^{x+h}-e^{x}}{h}=e^{x} \operatorname{Lt}_{h=0} \frac{e^{h}-1}{h} .
$$

Now

$$
\frac{e^{h}-1}{h}=1+\frac{h}{2}\left(1+\frac{h}{3}+\frac{h^{2}}{3 \cdot 4}+\ldots\right),
$$

the limiting value of which, when h becomes infinitely small, is 1.

Hence

$$
\frac{d y}{d x}=e^{x} .
$$

Next, let $y=a^{x}$.
Then

$$
\log _{e} y=x \log _{e} a,
$$

and

$$
y=e^{x \log _{c} a}=e^{u t}
$$

where

$$
x \log _{e} a=u
$$

Now

$$
\frac{d\left(e^{u}\right)}{d \cdot x}=\frac{d\left(e^{u}\right)}{d u} \cdot \frac{d u}{d x} .
$$

IIcnce

$$
\begin{aligned}
\frac{d y}{d x} & =e^{u} \cdot \frac{d\left(x \log _{e} a\right)}{d x} \\
& =e^{u} \cdot \log _{e} a \\
& =a^{x} \cdot \log _{e} a .
\end{aligned}
$$

(iii) To find the differential coefficient of a logarithm.

Let

$$
y:=\log _{e} x .
$$

Then

$$
e^{y}=x .
$$

Now, by Art. 17 (vi), since y is a function of x, and e^{y} is a function of y,

$$
\frac{d e^{y}}{d x}=\frac{d e y}{d y} \cdot \frac{d y}{d x} .
$$

But, by example (ii) of this Article,

$$
\frac{d e^{y}}{d y}=e^{y} .
$$

Hence

$$
\epsilon^{y} \frac{d y}{d x}=\frac{d x}{d x}=1,
$$

whence

$$
\frac{d y}{d x}=e^{-y}=\frac{1}{x} .
$$

Since

$$
\log _{a} x=\frac{\log _{e} x}{\log _{e} a},
$$

it follows that $\quad \frac{d\left(\log _{a} x^{2}\right)}{d x}=\frac{1}{x \log _{e} a}$.
19. In differentiating a function consisting of a number of factors, it is often convenient to take logarithms. For example, let $y=\frac{u v w \ldots}{f \phi \theta \ldots}$, where u, v, w, f, ϕ, θ, sc., are all functions of x. Then

$$
\log y=\log u+\log v+\log w+\ldots-\log f-\log \phi-\log \theta-\ldots
$$

and

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \frac{d w}{d x}+\ldots \\
& -\frac{1}{f} \frac{d f}{d x}-\frac{1}{\phi} \frac{d \phi}{d x}-\frac{1}{\theta} \frac{d \theta}{d x}-\ldots \\
& \frac{d y}{d x}=\frac{u v w \ldots}{f \phi \theta \ldots}\left[\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{v v} \frac{d v}{d x}+\ldots\right. \\
& \\
& \left.\quad-\frac{1}{f} \frac{d f}{d x}-\frac{1}{\phi} \frac{d \phi}{d x}-\frac{1}{\theta} \frac{d \theta}{d x}-\ldots\right]
\end{aligned}
$$

whence

It may be easily seen that this result is identical with that obtained ?,y the application of rules (iv) and (v) of Art. 17.

The same artifice may be conveniently adopted in many other eases. Let it be required, for example, to find the differential soefficient of $g^{c^{x}}$.

Here $\quad \log _{e} y=c^{x} \log _{e} g$
henee

$$
\frac{1}{y} \frac{d y}{d x}=c^{x} \log _{e} c \log _{e} g
$$

and

$$
\frac{d y}{d x}=c^{x} \log _{e} c \log _{e} g \cdot g^{c^{x}}
$$

20. The result of differentiating $\frac{d y}{d x}$ aceording to x is called the second differential coefficient or second derivative of y. The second alifferential coefficient of y is denoted by the symbol $\frac{d^{2} y}{d x^{2}}$, or, if $y=f(x)$, by $f^{\prime \prime}(x)$. Similarly, the result of repeating the operation of differentiation n times in succession is called the nth differential coeflicient or derisative, and is denoted by $\frac{d^{n} y^{\prime}}{-d^{n}}$, or $f^{(n)}(x)$.
21. If y be a product of two functions of x, u and r, it may he easily shown, by a method similar to that employed in establishing the Binomial Theorem for a positive integral exponent, that

$$
\begin{aligned}
& \frac{d^{n} y}{d x^{n}}=u \frac{d^{n} v}{d x^{n}}+n \frac{d u}{d x} \cdot \frac{d^{n-1} v}{d x^{n-1}}+\frac{n(n-1)}{2} \frac{d^{2} u}{d x^{2}} \cdot \frac{d^{n-2} v}{d x^{n-2}}+\ldots \\
&+n \frac{d^{n-1} u}{d x^{n-1}} \cdot \frac{d v}{d x}+\frac{d^{n} u}{d x^{n}} \cdot v
\end{aligned}
$$

22. If $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$,
then

$$
\begin{aligned}
& \frac{d y}{d x}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots+n a_{n} x^{n-1} \\
& \frac{d^{2} y}{d x^{2}}=2 a_{2}+2 \cdot 3 a_{3} x+\ldots+n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \vdots \\
& \frac{d^{n} y}{d x^{n}}=n!a_{n}
\end{aligned}
$$

Hence, if y be a rational integral function of x of the nth decree, each derivative is a function of a degree one lower than the preeeding derivative, the nth derivative is a constant, and all higher derivatives vanish.
23. Let $f(x)$ be a function of x, which admits of being expanded in a convergent scries in powers of x for all values of x within a eertain
range. Then it may be showu, and will here be assumed, that the function and its successive derivatives are continuous within the specified range of values of x.

Assume that $\quad f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$
Then

$$
\left.\begin{array}{l}
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \\
f^{\prime \prime}(x)= \\
\vdots \\
\vdots \\
f^{(n)}(x)= \\
\vdots
\end{array}\right) \quad \begin{aligned}
& \text { a } \\
& \\
&
\end{aligned}
$$

Put $x=0$ in these equations. Then

$$
a_{0}=f(0) ; a_{1}=f^{\prime}(0) ; a_{2}=\frac{1}{2!} f^{\prime \prime}(0) ; \& c \ldots a_{n}=\frac{1}{n!} f^{(n)}(0),
$$

where $f(0), f^{\prime}(0), f^{\prime \prime}(0)$, \&c., denote the results obtained by putting $x=0$ in $f(x)$ and its 1st, 2nd, \&e., derivatives.

Hence, by substitution of these values in the original expansion, it follows that

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots+\frac{\frac{2}{}^{n}}{n!} f^{(n)}(0)+\ldots
$$

Again, let $f(x)=\phi(a+x)$.
Then

$$
\begin{aligned}
& f^{\prime}(x)=\phi^{\prime}(a+x) \frac{d(a+x)}{d x}=\phi^{\prime}(a+x) \\
& f^{\prime \prime}(x)=\frac{d}{d x} \phi^{\prime}(a+x)=\phi^{\prime \prime}(a+x) \frac{d(a+x)}{d x}=\phi^{\prime \prime}(a+x),
\end{aligned}
$$

and so on, whence, if x be put $=0$,

$$
f(0)=\phi(a) ; f^{\prime}(0)=\phi^{\prime}(a) ; f^{\prime \prime}(0)=\phi^{\prime \prime}(a) ; \mathbb{N c} .
$$

Hence, by substitution,

$$
\phi(a+x)=\phi(a)+x \phi^{\prime}(a)+\frac{x^{2}}{2!} \phi^{\prime \prime}(a)+\ldots
$$

The expmansons just obtained are known as Maclaurin's and Taylor's Theorems respectively, and it must be borne in mind that their applieability in any given case depends upon whether the funetion fulfils the assumed conditions.

As an example of the application of Maclaurin's 'Theorem, let it be required to expand e^{x} in powers of x If $f(x)=e^{x}$, then $f^{\prime}(x)=e^{x}$,
$f^{\prime \prime}(x)=e^{x}$, and generally $f^{\prime(x)}(x)=e^{x}$. Hence $f(0)=1 ; f^{\prime}(0)=1$; $f^{\prime \prime}(0)=1$; and $f^{(x)}(0)=1$; whence

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

This series is known to be convergent for all values of n.
Again, as an example of the application of Taylor's Theorem, let it be required to expand $(a+x)^{n}$ in a series of powers of x.

Here

$$
\phi^{(n)}(a)=n(n-1) \cdots(n-r+1) a^{n-r}
$$

Hence

$$
(a+x)^{n}=a^{n}+n a^{n-1} x+\frac{n(n-1)}{2!} a^{n-2} x^{2}+\ldots
$$

It n be negative or fractional and x be $>a$, this series is divergent, and, in that case, therefore, 'Taylor's expansion would not hold.
24. It has been shown in Art. 16 that if a continuous function $f(x)$ is a maximum or minimum for the value a of the independent variable, then $f^{\prime}(a)=0$. It will now be desirable to investigate the conditions for a maximum or minimum analytically. A maximum value of a continuous function is one which is greater, and a minimum value is one which is less than the neighbouring values on either side. In symbols, if $f(x)$ be a maximum for $x=a$, then, for small values of $h, f(a+h)-f(a)$ and $f(a-h)-f(a)$ must both be negative, and, similarly, if it be a minimum, then these expressions must both be positice. Now, by Taylor's Theorem,

$$
f(a+h)-f(a)=h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\ldots
$$

and

$$
f(a-h)-f(a)=-h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)-\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\ldots
$$

If $f^{\prime}(a)$ be not 0 , then $f(a+h)-f(a)$ and $f(a-h)-f(a)$ will have different sigus, for, since h may be made indefinitely small, the sigus of the right-hand sides of the two equations will be determined by that of $f^{\prime}(\alpha)$. But, in order that $f^{\prime}(x)$ may be a maximum or minimum for $x=a, f(a+h)-f(a)$ and $f(a-h)-f(a)$ must have the same sign. Hence, for a maximum or minimum, $f^{\prime}(a)=0$. If, now, $f^{\prime \prime}(a)$ be positive, then $f(x)$ will be a minimum for $x=a$, while, if $f^{\prime \prime}(a)$ be negative, $f(x)$ will be a maximum. But, if $f^{\prime \prime}(a)=0$, then $f^{\prime \prime \prime}(a)$ must also be 0 , in order that $f(x)$ may be a maximum or minimum for $x=a$,
and $f(a)$ will be a maximum or minimum according as $f^{(i)\rangle}(a)$ is negative or positive, and so on. Hence, generally, $f(x)$ will be a maximum or minimum for $x=a$, if the first derivative which is not 0 for this value of x is of even order, and it will be a maximum or a minimum, according as this derivative is negative or positive. In order, therefore, to find the maxima or minima (if any) of a given function of $x, f(x)$ say, it is necessary (i) to find the values of x which satisfy the equation $f^{\prime}(x)=0$, and (ii) to examine the corresponding values of the successive derivatives until a derivative is reached which does not vanish.

It may be observed that the maximum values of a function will not all necessarily be greater than its minimum values, for a maximum or minimum value is determined with reference only to the immediately neighbouring values of the function.
25. It has been indicated in Art. 4 that a quantity regarded as a constant for the purposes of one problem may become an independent variable for the purposes of another. In some problems two or more quantities contained in the expression of a function may have to be regarded as variable, or susceptible of continuous variation. In these circumstances the function would be said to be a function of two, three, de., variables, as the case might be, and the differential coefficient of the function according to any one of the variables x (the other variables being considered for the moment as constants) is called the partial differential coefficient according to x, and is often denoted, for purposes of distinction, by the special symbol $\frac{\partial}{\partial x}$.

Thus, if $u=f(x, y)$,

$$
\frac{\partial u}{\partial x}=\operatorname{L} t_{h=0} \frac{f(x+h, y)-f(x, y)}{h} .
$$

Let Δu denote the increment of u wheu both x and y are supposed to receive increments, the former of h and the latter of k.

Then

$$
\begin{aligned}
\Delta u= & f(x+h, y+k)-f(x, y) \\
= & f(x+h, y+k)-f(x, y+k) \\
& +f(x, y+k)-f(x, y) .
\end{aligned}
$$

Now, as h is indefinitely diminished, $\frac{f(x+h, y+h)-f(x, y+h)}{h}$
approaches the limiting value $\frac{\partial f(x, y+k)}{\partial x}$, and when k is indefinitely diminished $\frac{f(x, y+k)-f(x, y)}{k} \frac{1}{k}$ approaches the limiting value $\frac{\partial j(x, y)}{\partial y}$, while $\frac{\partial f(x, y+k)}{\partial x}$ becomes $\frac{\partial f(x, y)}{\partial x}$. Hence, in the limit, the relation $\Delta u=f(x+h, y+k)-f(x, y)$ may be written in the symbolical form

$$
d u=\frac{\partial f}{\partial x} \cdot d x+\frac{\partial f}{\partial y} \cdot d y
$$

By similar reasoning, this relation can be extended to any number of variables, so that, if $u=f(x, y, z \ldots)$,

$$
d u=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} \cdot d y+\frac{\partial f}{\partial z} d z+\ldots
$$

Suppose now that $u=f(c, w)$, where both v and w are functions of x. Then, from the above,

$$
d u=\frac{\partial f}{\partial v} \cdot d v+\frac{\partial f}{\partial w} d w,
$$

which may be written in the form

Hence

$$
\begin{aligned}
& d u=\frac{\partial f}{\partial v} \cdot \frac{d v}{d x} d x+\frac{\partial f}{\partial w} \cdot \frac{d w}{d x} d x . \\
& \frac{d u}{d x}=\frac{\partial f}{\partial v} \cdot \frac{d v}{d x}+\frac{\partial f}{\partial w} \cdot \frac{d w}{d x} .
\end{aligned}
$$

26. It remains now to explain the notation and elementary methods of the Integral Calculus.
27. Let $\phi(x)$ be a given function of x; then $\phi(a)$ will be the value of the function corresponding to $x=a$, and $\phi(b)$ will be the value corresponding to $x=b$. Now let $b-a=n h$, and let it be required to find the value of $h[\phi(a+h)+\phi(a+2 h)+\ldots+\phi(a+n h)]$, that is, the sum of the products of each successive value of the function and the increment in the value of x. The evaluation of this sum, which may be symbolically denoted by $\Sigma_{x=a+h}^{x=a+n h} \phi(x) h$, is a problem in finite summation, and, as such, may be solved by the methods of algebra or finite differences. But suppose h to be indefinitely decreased. The number of terms comprised in Σ will then be indefinitely increased, and
as x changes by infinitely small increments from a to b, $\phi(x)$ will assume in succession each corresponding value from $\phi(a)$ to $\phi(b)$. In these cireumstances, the limiting value of the sum (if such a value exist) is called the definite integral of $\phi(x)$ between the limits a and b, and is denoted by $\int_{a}^{0} \phi(x) d x$, the symbol \int being a long s (the first letter of the word "sum"), and the $d x$ denoting that the increment h, by which each value of $\phi(x)$ is to be multiplied, is to be indefinitely diminished. The evaluation of this sum is the fundamental problem of the Integral Calculus.
28. A geometrical representation of a definite integral may be obtained in the following way:-

Let the function $\phi(x)$ be represented by the curve shown in the annexed diagram, in the manner explained in Art. 9, so that the ordinate of the curve at any point is the value of $\phi(x)$ corresponding to the value of x represented by the distance along $O X$ from O to the foot of the ordinate. Let $O A=a$ and $O B=b$, let $A B$ be divided into n parts, each $=h$, and on each of these parts let a rectangle be constructed as shown in the diagram. Then

$A N=\phi(a), B N=\phi(b)$, and the area of any one of the reetangles will be $h \phi(a+r h)$. Hence the whole area represented by the rectangles constructed on $A B$ will be ${\underset{-}{x=a+h}}_{x=a+n h} \phi(x) h$. Now suppose h to be indefinitely diminished. In these cireumstances the number of rectangles will become infinitely large, while their bases will become infinitely small, and their total area will ultimately coincide with that contained by $A B, A M, B N$, and the curve $M N$. Hence the area contained
by the ordinates $A M$ and $B N$, the base $B A$ and the intereepted portion of the curve forms a geometrical representation of $\int_{a}^{b} \phi(x) d x$.
29. The applications of the Integral Calculus to the 'Theory of Compound Interest may now be illustrated. For it has been shown in Art. 11 that if a curve be drawn to represent the function $(1+i)^{x}$, then the area contained by the base $O a_{n}$ drawn to the left along $O X^{\prime}$ to represent n, the ordinates $O B$ and $a_{n} b_{n}$ and the intercepted portion of the curve forms a geometrical representation of $\overline{\bar{n}}$. But in the notation of the Integral Calculus, this area is $=\int_{0}^{n}{ }_{r^{t}} d t$.

Hence

$$
\begin{aligned}
& \bar{a}_{\bar{n}}=\int_{0}^{n}{ }^{t}{ }^{t} d t . \\
& \bar{s}_{\bar{n}}=\int_{0}^{n}(1+i)^{t} d t .
\end{aligned}
$$

30. It is now necessary to investigate a method of evaluating the definite integral $\int_{a}^{b} \phi(x) d x$.

Let $f(x)$ be a function of x such that $f^{\prime}(x)=\phi(x)$. Then, since $\phi(x)$ is the limiting value of the expression $\frac{f(x+h)-f(x)}{h}$, when h is indefinitely diminished, it follows that $\int_{a}^{b} \phi(x) d x$, regarded as the limiting value of $\mathbf{s}_{x=a}^{x=a+(n-1) h} \phi(x) h,=$ the limiting value of $\mathbf{s}_{x=a}^{x=a+(n-1) h}[f(x+h)-f(x)]$, that is, of

$$
\begin{aligned}
f(a+h)-f(a)+f(a+2 h)-f(a+h)+f(a & +3 h)-f(a+2 h)+\ldots \\
& +f(a+n h)-f(a+n-\overline{1} h)
\end{aligned}
$$

which $=f(a+n h)-f(a)$. Now when h is indefinitely diminished, $n h=b-a$, and the expression just given becomes $f(b)-f(a)$.

Hence

$$
\int_{a}^{b} \phi(x) d x=f(b)-f(a)
$$

where

$$
f^{\prime \prime}(x)=\phi(x) .
$$

The problem of evaluating the detinite integral of $\phi(x)$ resolves itself, therefore, into finding the function whose differential coefficient is $\phi(x)$, that is, into performing a process which is the converse of
differentiation. By reference to the object in view, the symbol $\int \phi(x) d x$ is used to denote the process in question, and this symbol is called an Indefinite Integral of $\phi(x)$. The process is called inteigration.
31. Although it may be proved that every continnons function has an indefinite integral, no infallible rules can be laid down for finding the integral of any giren function. The process rests ultimately on the recognition of the function to be integrated (or of some simpler function upon the integral of which the integral in question may be found to (lepend), as the differential coefficient of some known function. Hence the requisites for success in integration are (i) a linowledge of the differential coefficients of various standard functions, (ii) a knowledge of the artifices by which indefinite integrals may be resolved into others of a simpler character.
32. It would be beyond the scope of this chapter, or the immediate requirements of students of this work, to attempt to give a complete list of fundamental integrals, or a resume of methods of reduction Under the first head it will be sufficient to note the following results:-

$$
\begin{aligned}
& \frac{d}{d x} \cdot x^{n}=n x^{n-1} . \quad \text { Hence } \int \cdot x^{n} d x=\frac{x^{n+1}}{n+1} \\
& \text { (except for } n=-1 \text {) } \\
& \frac{d}{d x^{x}} \cdot e^{x}=e^{x} \quad, \int e^{x} d x=e^{x} \\
& \frac{d}{d \cdot x} \cdot \pi^{x}=a^{x} \log _{e} a \\
& \frac{d}{d x} \cdot \log e x=\frac{1}{x} \\
& \text {, } \int{ }^{\bullet} w^{x^{x}} d x=\frac{\pi^{x}}{\log _{e} a} \\
& \text { " } \int \frac{\cdot d x}{x}=\log _{0} x^{x}
\end{aligned}
$$

In all the above results $(x+c)$ may be substituted for x, since the addition of a constant to x does not atfect the form of the differential coefficient. Similarly, a constant factor may be introduced; thus:-
$\int c e^{x} d d_{x}=c c^{x}$. Again, since

$$
\frac{d}{d x}(u+v+u+\ldots)=\frac{d u}{d x}+\frac{d v}{d u}+\frac{d u}{d x}+\ldots
$$

it follows that

$$
\int(u+v+w+\ldots) d x=\int u d x+\int v d x+\int w d x+\ldots
$$

For example,

$$
\begin{aligned}
& \int\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right) d x \\
& \quad=a_{0} x+a_{1} \frac{x^{2}}{2}+a_{2} \frac{x^{3}}{3}+\ldots+a_{n} \frac{x^{n+1}}{n+1} .
\end{aligned}
$$

33. Under the second heading mentioned above, two artifices of special utility may be mentioned. The first is the process of changing the independent variable.

Let it be required to find $\int \phi(x) d x$, and suppose that $\phi(x)$ can be expressed in the form $\psi(u)$, where $u=f(x)$, and that $f^{\prime}(x)=\chi(u)$, so that $\frac{d u}{d x}=\chi(u)$. Then $\int \phi(x) d x=\int \psi(u) \frac{d x}{d u} d u=\int \frac{\psi(u)}{\chi(u)} d u$. If now $\frac{\psi(u)}{\chi(u)}$ can be recognized as the differential coefficient of some known function of u, the integral can be expressed as a function of u and hence of x.

For example, let $\phi(x)=c^{x} g^{e^{x}}$.

$$
\text { Put } u=c^{x} \text {, so that } c^{x} g^{c^{x}}=u g^{u} \text {, }
$$

and

$$
d u=c^{x} \log _{e} c d x=u \log _{e} c d x
$$

Then

$$
\begin{aligned}
& \int c^{x} g^{e^{x}} d x=\int u g^{u} \cdot \frac{d u}{u \log _{e} c} \\
& =\int \frac{g^{u} d u}{\log _{e} c}=\frac{1}{\log _{e} c \log _{e} g} \cdot g^{u} \\
& =\frac{g^{c^{x}}}{\log _{e} c \log _{e} g} .
\end{aligned}
$$

In this case an experienced integrator would at once recognize $e^{x} g^{c^{x}}$ as the differential coefficient (except for a constant factor) of $g^{c^{x}}$, and would therefore sare the trouble of going through the intermediate process of putting $c^{x}=u$, but the artifice is one that may often be usefully employed to reduce less easily recognized functions.

The second artifice to be noticed is that of integration by parts, and is obtained from the well-known formula of the Differential Calculus

$$
\frac{d(u v)}{d x}=u \frac{d x}{d x}+v \frac{d u}{d x},
$$

which gives, on integration,

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x .
$$

Hence the rule:-If the function to be integrated consists of two factors, one of which (the second, say, for identilication) is recognizable as a differential coefficient, then the required integral $=$ the product of the first factor and the integral of the second, less the integral of the product of the differential coefficient of the first factor and the integral of the second.

For example, required $\int \log x d x$.
This may be written $\int \log x \frac{d(x)}{d x} d x$, for the differential coefficient of x is 1 . Hence by the formula

$$
\begin{aligned}
& \int \log x d x=x \log x-\int x \cdot \frac{d \log x}{d x} d x \\
& \quad=x \log x-\int 1 . d x=x \log x-x
\end{aligned}
$$

34. In infinitesimal analysis it is sometimes necessary to find the differential coefficient of a Definite Integral.

Leet it be required to find $\frac{d}{d c} \int_{a}^{\bullet b} \phi(x, c) d x$, where a, b, and $\phi(x, c)$ are all functions of c, the c being inserted in ϕ so that its presence in the function may be more clearly indicated.

Assume that

$$
\int \phi(x, c) d x=\psi(x, c)
$$

Then

$$
\int_{a}^{b} \phi(x, c) d x=\psi(b, c)-\psi(a, c),
$$

and

$$
\frac{d}{d c} \int_{a}^{b} \phi(x, c) d x=\frac{d \Psi(b, c)}{d c}-\frac{d \psi(a, c)}{d c}
$$

$=$ by Art. 25

$$
\begin{array}{r}
\frac{\partial \psi(b, c)}{\partial c}+\frac{\partial \psi(b, c)}{\partial b} \cdot \frac{d b}{d c} \\
-\frac{\partial \psi(a, c)}{\partial c}-\frac{\partial \psi(a, c)}{\partial a} \cdot \frac{d a}{d c} .
\end{array}
$$

Nuw

$$
\frac{d \psi(x, c)}{d x}=\phi(x, c) .
$$

Hence

$$
\frac{\hat{c} \psi(l, c)}{\hat{c} b}=\phi(b, c)
$$

and

$$
\frac{\hat{\partial} \psi(a, c)}{\bar{\partial} a}=\phi(r, c) .
$$

Also

$$
\begin{gathered}
\frac{\partial \psi(b, c)}{\partial c}-\frac{\partial \psi(a, c)}{\partial c}=\frac{\partial}{\partial c}[\psi(b, c)-\psi(a, c)] \\
=\frac{\partial}{\partial c} \int_{a}^{b} \phi(x, c) d x \\
=L^{2} t_{h=0} \int_{a}^{\rho b} \frac{\phi(x, c+h)-\phi(x, c)}{h} d x=\int_{a}^{b} \frac{d \phi(x, c)}{d c} d x .
\end{gathered}
$$

Hence, fimally,

$$
\frac{d}{d c} \int_{a}^{b} \phi(x, c) d x=\int_{a}^{b} \frac{d \phi(x, c)}{d c} d x+\phi(b, c) \frac{d b}{d c}-\phi(a, c) \frac{d a}{d c} .
$$

If neither b nor a be a function of c, then

$$
\frac{d}{d c} \int_{a}^{b} \phi(x, c) d x=\int_{a}^{b} \frac{d \phi(x, c)}{d c} d x .
$$

35. It has been shown that the evaluation of a Definite Integral depends, in gencral upon the determination of the Indefinite Integral. Sometimes, however, the value of the Definite Integral between some special limits can be found, when the Indefinite Integral cannot be expressed in finite terms. For example, it may be shown that

$$
\int_{0}^{\infty} e^{-a^{2} x^{2}} d x=\frac{\sqrt{ }}{2 a} .
$$

When a required Definite Integral cannot be found, either by the determination of the Indefinite Integral or otherwise, it is necessary to resort to some one of the various methods of approximate integration. These methods (which are of special importance in connection with the subject of Life Contingencies, since most of the functions met with in that subject do not admit of exact integration) consist either (i) in replacing the given Integral by a near!y equivalent Integral of a simpler character or by a series of such Integrals, or (ii) in expanding the given

Integral in a series of equidistant values of the finsetion to be integrated (multiplied by a constant factor) and the successive differential coefficients of the function.
36. The general process adopted in the practical application of the first of the abore-mentioned methods of aprroximation may be indicated by reference to the geometrical representation of a Definite Integral. It has been shown in Art. 2s that the evaluation of the Definite Integral $\int_{a}^{0} \phi(x) d x$ comes to the same thing as the determination of the area contained by the base $(b-a)$, the two ordinates $\phi(a)$ and $\phi(b)$, and the intercepted portion of the curve which represents the function $\phi(x)$. Now this area will not be materially altered if the true curve be replaced by another curve following approximately the same course. Hence, if some integrable function, $\psi(x)$ say, can be found which, when graphically represented, will occupy nearly the same position as the curve representing $\phi(x)$, then the value of $\int_{a}^{b} \psi(x) d x$ will be approximately the same as that of $\int_{a}^{b} \phi(x) d x$. Now the function $c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1}$ may be made to assume the same values as $\phi(x)$ for n values of x [or, in other words, to pass through n points on the curve representing $\phi(x)]$, by assigning to $c_{0}, c_{1}, \& \in \ldots \ldots c_{n-1} \ldots$ the values given by the simultaneous equations

$$
\begin{array}{ccc}
c_{0}+c_{1} x_{1}+\ldots+c_{n-1} x_{1}^{n-1}=\phi\left(x_{1}\right) \text { or } y_{1} \\
c_{0}+c_{1} x_{2}+\ldots+c_{n-1} x_{2}{ }_{2}^{n-1}=\phi\left(x_{2}\right) & n & y_{2} \\
\vdots & \vdots & \vdots \\
c_{0}+c_{1} x_{n}+\ldots+c_{n-1} x_{n}^{n-1}=\phi\left(x_{n}\right) & , & y_{n}
\end{array}
$$

If, then, $(n-2)$ equidistant ordinates be drawn to the curve representing $\phi(x)$ between $\phi(a)$ and $\phi(b)$, and $c_{0}, c_{1}, c_{2}, \ldots c_{n-1}$ be given the values determined by the equations

$$
\begin{aligned}
& c_{0}+c_{1} a+\ldots+c_{n-1} a^{n-1}=\phi(a) \\
& c_{0}+c_{1}\left(a+\frac{b-a}{n-1}\right)+\ldots+c_{n-1}\left(a+\frac{b-a}{n-1}\right)^{n-1}=\phi\left(a+\frac{u-a}{n-1}\right) \\
& c_{0}+c_{1}\left(a+\frac{2(\sqrt{n-a}}{n-1}\right)+\ldots+c_{n-1}\left(a+\frac{2 \overline{b-a}}{n-1}\right)^{n-1}=\phi\left(a+\frac{2 b-a}{n-1}\right) \\
& \vdots \\
& c_{0}+c_{1} b+\ldots+c_{n-1} b^{n-1}=\phi(b)
\end{aligned}
$$

then the curve representing the function $c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$ will coincide with that representing $\phi(x)$ at each end of the section under consideration, and also at $n-2$ intermediate points, and will clearly, therefore, follow more or less the san!e course. Hence, approximately,

$$
\begin{aligned}
& \int_{a}^{b} \phi(x) d x^{2}=\int_{a}^{b}\left(c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}\right) d x \\
& =c_{0}(l-a)+\frac{c_{1}}{2}\left(b^{2}-a^{2}\right)+\ldots+\frac{c_{n-1}}{n}\left(b^{n}-a^{n}\right)
\end{aligned}
$$

Suppose, for cxample, that n be taken as 3 , and for convenience let x be measured from the foot of the central ordinate, so that the required integral becomes $\int_{-\frac{b-a}{2}}^{\frac{b-a}{2}} \phi(x) d x$, and let $\phi\left(-\frac{b-a}{\underline{2}}\right), \phi(0)$ and $\phi\left(\frac{b-a}{\square}\right)$ be denoted by y_{-1}, y_{0} and y_{1}. Then

$$
\begin{aligned}
c_{0}-c_{1} \frac{b-u}{2}+c_{2} \frac{(b-a)^{2}}{t} & =y_{-1} \\
c_{0} & =y_{0}
\end{aligned}
$$

and

$$
c_{0}+c_{1} \frac{b-u}{\underline{\underline{1}}}+c_{2} \frac{(b-a)^{2}}{4}=y_{1}
$$

whence

$$
c_{11}=y_{0} ; c_{1}=\frac{y_{1}-y-1}{b-a} ; \text { and } c_{2}=\frac{2\left(y-1-2 y_{0}+y_{1}\right)}{(b-a)^{2}}
$$

and the required integral

$$
\begin{aligned}
& =\text { approximately } \int_{-\frac{b-a}{2}}^{\frac{b-a}{2}}\left(c_{0}+c_{1} x+c_{2} x^{2}\right) d \cdot v \\
& =c_{0}(b-a)+\frac{c_{2}}{1 \underline{2}}(b-a)^{3}=(b-a) \frac{y_{-1}+4 y_{0}+y_{1}}{6}
\end{aligned}
$$

The geometrical interpretation of this result is that the area representing the required integral is approximately equal to the rectangle contained by the base $(b-a)$ and the mean of the two end ordinates and four times the central ordinate. This would, in general, be too rough an approximation to be of any practical use. Better results may be oltained by giving a larger value to n (i.e., by making the substituted eurve coincide with the true curve at a larger number of points), but if n be taken large enough to give a good result, the values of the constants would become very complicated. It is more usual, therefore, to
subdivide the whole range of integration into comparatively short sections, and to add the results obtained by approximately integrating over each short section by a simple formula such as that given above. Thus, let the integral $\int_{a}^{b} \phi(x) d x$ be represented by the area $M I B N$ in the annexed diagram. Suppose $A B$ to be divided into $2 n$ equal

parts, and let the successive ordinates be denoted by $y_{1}, y_{2}, y_{3}, \ldots y_{2 n+1}$. Then the area between the 1 st and 3rd ordinates is approximately $\frac{b-a}{n} \cdot \frac{y_{1}+1 y_{2}+y_{3}}{6}$, the area between the 3rd and 5th is approximately $\frac{b-a}{n} \cdot \frac{y_{3} \div 1 y_{4}+y_{5}}{6}$, and so on.

Hence, approximately,

$$
\begin{aligned}
& \int_{a}^{b_{\phi}^{\prime}}(x) d x=\frac{b-u}{6 n}\left[\left(y_{1}+1 y_{2}+y_{3}\right)+\left(y_{3}+4 y_{1}+y_{5}\right)+\ldots\right. \\
&\left.\quad+\left(y_{2 n-1}+4 y_{2 n}+y_{2 n+1}\right)\right] \\
&= \frac{l-n}{6 n}\left[y_{1}+2\left(y_{3}+y_{3}+\ldots+y_{2 n-1}\right)\right. \\
&\left.\quad+4\left(y_{2}+y_{4}+y_{6}+\ldots+y_{2 n}\right)+y_{2 n+1}\right]
\end{aligned}
$$

An amalytical proof of this formula will be found, with other formulas of a similar nature, in the Text-Book, Part II, ch. xxiv, Arts. 49-56.
37. The oljeet of the second of the methods of approximate integration mentioned in Art. 35 is to establish a relation between the

Definite Integral $\int_{a}^{b} \phi(x) d x$ and the Finite sum $h[\phi(a)+\phi(a+h)+\ldots$ $+\phi(b-h)]$.

For convenience, let u_{x} be written for $\phi(x)$. Then

$$
\begin{aligned}
& h\left[u_{a}+u_{a+h}+\ldots+u_{b-h}\right] \\
& \quad=h\left[1+(1+\Delta)^{h}+\ldots+(1+\Delta)^{\left.b--a-h_{h}\right] u_{a}}\right.
\end{aligned}
$$

(where $\Delta u_{x}=u_{x+1}-u_{x}$, in accordance with the ordinary notation of the Calculus of Finite Differences)

$$
=\frac{h\left[(1+\Delta)^{b-a}-1\right]}{(1+\Delta)^{h}-1} u_{a}=\frac{h}{(1+\Delta)^{h}-1}\left(u_{b}-u_{a}\right)
$$

But $(1+\Delta)^{h} u_{x}=u_{x+h}=$ (by Taylor's Theorem)

$$
\begin{aligned}
u_{x} & +h \frac{d u_{x}}{d x}+\frac{h^{2}}{2!} \frac{d^{2} u_{x}}{d x^{2}}+\ldots \\
& =\left(1+h \frac{d}{d x}+\frac{h^{2}}{2!} \frac{d^{2}}{d x^{2}}+\ldots\right) u_{x}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\hbar}{(1+\Delta)^{h}-1} u_{b}=\frac{1}{\frac{d}{d b}+\frac{h}{2} \frac{d^{2}}{d b^{2}}+\frac{l^{2}}{6} \frac{d^{3}}{d b^{3}}+\ldots} u_{b} \\
& \quad=\left[\binom{d}{d b}^{-1}-\frac{h}{2}+\frac{h^{2}}{12} \frac{d}{d b}-\frac{h^{4}}{720} \frac{d^{3}}{d b^{3}}+\ldots\right] u_{b}
\end{aligned}
$$

Similarly, $\frac{h}{(1+\Delta)^{h}-1} u_{a}=\left[\left(\frac{d}{d a}\right)^{-1}-\frac{h}{2}+\frac{h^{2}}{12} \frac{d}{d a}-\frac{h^{4}}{720} \frac{d^{3}}{d a^{3}}+\ldots\right] u_{a}$ $\therefore \quad h\left[u_{a}+u_{a+h}+\ldots+u_{b-h}\right]$

$$
\begin{array}{r}
=\left(\frac{d}{d b}\right)^{-1} u_{b}-\left(\frac{d}{d a}\right)^{-1} u_{a}-\frac{h}{2}\left(u_{b}-u_{a}\right)+\frac{h^{2}}{12}\left(\frac{d u_{b}}{d b}-\frac{d u_{a}}{d a}\right) \\
-\frac{h^{4}}{720}\left(\frac{d^{3} u_{b}}{d b^{3}}-\frac{d^{3} u_{a}}{d a^{3}}\right) .
\end{array}
$$

Now, when h is indefinitely diminished, $h_{[}\left[u_{a}+u_{a+h}+\ldots+u_{b-h}\right]$ assumes the limiting value $\int_{a}^{b} u_{x} d x$, and the third and subsequent terms on the right-hand side of the equation vanish, provided the series be convergent. Hence the symbolical expression $\left(\frac{d}{d b}\right)^{-1} u_{b}-\left(\frac{d}{d a}\right)^{-1} u_{a}$
mast be interpreted as denoting $\int_{a}^{b} u_{x} d x$, and the equation becomes

$$
\begin{aligned}
& h_{[}\left[u_{a}+u_{a+\eta_{b}}+\ldots u_{b-h}\right]=\int_{a}^{b} u_{x} d x-\frac{h}{2}\left(u_{b}-u_{a}\right)+\frac{h^{2}}{12}\left(\frac{d u_{b}}{d b}-\frac{d u_{a}}{d a}\right) \\
&-\frac{h^{4}}{720}\left(\frac{d^{3} u_{b}}{d b^{3}}-\frac{d^{3} u_{a}}{d u^{3}}\right)+\ldots
\end{aligned}
$$

or

$$
\begin{array}{r}
\int_{a}^{\infty} u_{a} \lambda_{x} x=h_{[}\left[u_{a}+u_{a+h}+\ldots+u_{b-h}\right]+\frac{\frac{\hbar}{2}}{\frac{2}{2}}\left(u_{b}-u_{a}\right)-\frac{h^{2}}{12}\left(\frac{d u_{b}}{d b}-\frac{d u_{a}}{d a}\right) \\
\\
+\frac{h^{4}}{720}\left(\frac{d^{3} u_{b}}{d b^{3}}-\frac{d^{3} u_{a}}{d a^{3}}\right)+\ldots
\end{array}
$$

If the lower limit be taken as 0 , and the function vanish at the upper limit, then

$$
\int_{0}^{\infty} u_{x} d x=h\left[u_{0}+u_{h}+u_{2 h}+\ldots\right]-\frac{h}{2} u_{0}+\frac{h^{2}}{12} u_{0}^{\prime}-\frac{h^{4}}{720} u^{\prime \prime \prime}{ }_{0}+\ldots
$$

where u_{0}^{\prime} and $u^{\prime \prime \prime}{ }_{0}$ denote the results of putting $x=0$ in the first and third differential coefficients of u_{x}.

$$
\text { If } h \text { be put }=\frac{1}{m} \text {, then }
$$

$$
\int_{0}^{\infty} u_{x} d x=\frac{1}{m}\left(u_{\frac{1}{m}}+u_{\frac{2}{m}}+\ldots\right)+\frac{1}{2 m} u_{0}+\frac{1}{12 m^{2}} u_{0}^{\prime}-\frac{1}{720 m^{4}} u^{\prime \prime \prime}{ }_{0}+\ldots
$$

A similar demonstration of the formula for the case in which $h=1$, and an altermative demonstration of the general formula, will be found in the Text-Book, Part II.

It will be noted that the validity of all the formulas depends on the assumption that $k\left[u_{a}+u_{a+h}+\ldots+u_{b}-h\right]$ can be expanded in a concergent series in powers of l.

CHAPTER X.

Applications of the Calculds of Finite Differences and the Infinitesimal Calculus.

1. For the purposes of the present chapter it will be convenient to follow the general arrangement of the earlier part of the book, and to take up in order such of the subjects therein discussed, as may, with advantage, be further investigated with the aid of Finite Differences or the Differential and Integral Calculus.
2. In some problems in which interest is involved, either alone or in conjunction with some other factor such as mortality, it is found convenient to deal with infinitely short intervals of time. The word continuous is used in this connection. Thus, an amnuity payable by infinitely small instalments at infinitely short intervals is called a continuous amnity, and a Conversion Table giving the Single Premium, or Premium per annum payable momently, corresponding to a given continuous annuity-value, is said to be constructed according to the Continuous Method. The nominal rate of interest, convertible momently, or force of interest, corresponding to a given effective rate might, in a similar sense, be described as a continuous rate of interest. Although such conceptions as those of a Foree of Interest or a Continuous Anmuity do not admit of actual realization, approximations to them may be found in practical finance. Consider, for instance, the case of a company possessing large funds invested in mumerous securities upon wnich the interest becomes due at various dates through the year, receiving income from various sources in daily instalments, and frequently making new investments. In such a case, the income
taken as a whole approximates to a continuous varying annuity and, similarly, the fund as a whole may be regarded as accumulating continuously at a continuous varying rate of interest.

The continuous method of analysis naturally suggests the use of the Infinitesimal Calculus.
3. Suppose a unit of money to accumulate under the operation of a force of interest-this force not being necessarily constant. Let $f(t)$ be the amount of the unit at the end of any time t, and let δ_{t} be the force of interest operating at that precise moment. Then the amount of the unit in $(t+h)$ years will be $f(t+h)$, and since δ_{t} is the nominal rate of interest per unit per amnum convertible momently, or, in other words, the instantaneous rate of interest per unit per ammum, at the precise moment under consideration, it follows that in the limit when $h=0$
or

$$
\begin{gathered}
f(t+h)=f(t)+h f(t) \delta_{t} \\
\delta_{t}=\operatorname{Lt}_{h=0} \frac{f(t+h)-f(t)}{h f(t)} .
\end{gathered}
$$

Hence, if $f(t)$ be a continuous function of t (in the sense defined in Chapter IL, Art. 7),

$$
\begin{equation*}
\delta_{t}=\frac{1}{f(t)} \frac{d f(t)}{d t}=\frac{d \log _{e} f(t)}{d t} . \tag{1}
\end{equation*}
$$

This result expresses the fact that if the amount of 1 in t years can be represented by a continuous function of t for all values of t within given limits, then the force of interest operating at any time t within these limits is equal to the differential coefficient of the Napierian logarithm of the function.

In the corm $\delta_{t}=\frac{1}{f(t)} \frac{d f(t)}{d t}$ the relation may be deduced directly from the definitions of a force of interest and a differential coefficient. For, if $f(t)$ be the amount of 1 in t years, then $\frac{d f(t)}{d t}$ represents the instantaneous rate of increase of $f^{\prime}(t)$ as the independent variable passes through the precise value t. Hence the force of interest δ_{t}-which represents the instantaneons rate of increase of $f(l)$ per unit-is equal to $\frac{1}{f^{\prime}(t)} \cdot \frac{d f(t)}{d t}$.

In general, δ_{t} will be a continuous function of t.
4. Since $f(t)=1$ and $\log _{e} f(t)=0$ when $t=0$, it follows from equation (1) that
whence

$$
\begin{align*}
& \log _{e j} f(t)=\int_{0}^{t} \delta_{t} d t \\
& f(t)=e^{\int_{0}^{t} \delta_{d} d t} \tag{2}
\end{align*}
$$

This equation expresses the fact that if the force of interest operating at any time t within given limits cari be represented by a continuous function of t, δ_{t} say, then the amount of a unit in any time t within those limits will be $e^{\int_{0}^{\partial t} \delta_{t} d t}$.

Whether the rate of interest be constant or variable, the present value of 1 due t years hence is, on the ordinary assumptions of finance, the reciprocal of the amount of 1 in t years. Hence, the present value of 1 due t years hence will be given by the equation

$$
\begin{equation*}
[f(t)]^{-1}=e^{-\int_{0}^{\iota_{0}} \delta_{d} d t} \tag{3}
\end{equation*}
$$

5. By means of formulas (2) and (3) the amount and present value of 1 may be accurately calculated in any case in which δ_{t} is an integrable function of t. It will be convenient to take a few examples.
(a) Let δ_{t} be a constant, δ say.

Then, since $\int_{0}^{i t} \delta d t=\delta t$, it follows that $f(t)=e^{\delta t}$ and $[f(t)]^{-1}=e^{-\delta t}$
Also

$$
f(1)=e^{\delta} \text { and }[f(1)]^{-1}=e^{-\delta}
$$

whence

$$
f(t)=[f(1)]^{t} \text { and }[f(t)]^{-1}=[f(1)]^{-t}
$$

If $f(1)$, the amount of 1 in a year, be denoted by $(1+i)$, the above results take the form $f(t)=(1+i)^{t} ;[f(t)]^{-1}=(1+i)^{-t}$. In fact, the general formulas reproduce, as they should of course do, the results obtained by ordinary algebraical methods for a uniform rate of interest.
(b) Let $\delta_{t}=\delta_{0} r^{t}$, where δ_{0} and r are constants, δ_{0} being the value of δ_{t} when $t=0$. Then, since

$$
\begin{gathered}
\int_{0}^{t} \delta_{0} r^{t} d t=\frac{\delta_{0}}{\log _{e} r^{\prime}}\left(r^{t}-1\right) \\
f(t)=e^{\frac{\delta_{0}}{\log _{6} r^{\prime}}\left(r^{t}-1\right)} ;[f(t)]^{-1}=e^{\frac{\delta_{0}}{\log _{6} e r}\left(1-r^{\prime}\right)}
\end{gathered}
$$

These results give the amome and present value of 1 under the operation of a foree of interest commencing at δ_{o} and continuously increasing or decreasing (according as r is greater or less than 1) in such a ratio that its values at successive equidistant times are in greometrie progression. The corresponding effective rates of interest for successive years will be as follews:-

$$
\begin{aligned}
& \text { 1st year...f(1)-1 or } \quad e^{\frac{\delta_{0}(r-1)}{\log e r}}-1 \\
& \text { 2nd }, \ldots \frac{f(\Omega)}{f(1)}-1 \quad, \quad e^{\frac{\delta_{0} r(r-1)}{\log c r}}-1 \\
& \text { 3rd } \quad, \cdots \frac{f(3)}{f(\underline{2})}-1 \quad, \quad e^{\frac{\dot{o}_{0} r(r-1)}{\log _{\epsilon} r}}-1
\end{aligned}
$$

and so on.
(c) Let $\delta_{t}=\delta_{0}-r \cdot t$ for all values of t up to n, and remain constant and $=\delta_{n}$ for all values of t greater than n.

For values of t less than n

$$
f(t)=e^{\int_{0}^{t}\left(\delta_{0}-r t\right) d t}=e^{\delta_{0} t-\frac{r t^{2}}{2}} ;[f(t)]^{-1}=e^{-\delta_{0} t+\frac{r t^{2}}{2}} .
$$

For values of t greater than n, the integration must be divided into two parts, sinee δ_{t} is not represented by a single continuous function. Thus

$$
f(t)=e^{\int_{0}^{n}\left(\delta_{0}-r\right) d t+\int_{n}^{t} \delta_{n} d t}=e^{\delta_{0} n-\frac{r n^{2}}{2}+(t-n) \delta_{n}}
$$

and, similarly,

$$
[f(t)]^{-1}=e^{-\delta_{0} n+\frac{r n^{2}}{2}-(t-n) \delta_{n}} .
$$

Since $\delta_{0}-r n=\delta_{n}$, whence $r=\frac{\delta_{0}-\delta_{n}}{n}$, the above results maly be written in the form

$$
\begin{array}{ll}
t<n & f(t)=e^{\delta_{0} t-\frac{1}{2 n}\left(\delta_{0}-\delta_{n}\right) t^{2}} ;[f(t)]^{-1}=e^{-\delta_{0} t+\frac{1}{2 n}\left(\delta_{0}-\delta_{n}\right) t^{2}} \\
t>n & f(t)=e^{n}{ }^{n}\left(\delta_{0}-\delta_{n}\right)+t \delta_{n}
\end{array}\left[f^{\prime}(t)\right]^{-1}=e^{-\frac{n}{2}\left(\delta_{0}-\delta_{n}\right)-t \delta_{n}} .
$$

These formulas give the amount and present value of 1 under the operation of a force of interest commencing at δ_{0}, decreasing by equal decrements in equal times to δ_{n}, and thereafter remaining constant.

If $i_{1}, i_{2}, i_{3}, \ldots$ be the corresponding effective rates of interest for the 1 st, $2 \mathrm{nd}, 3 \mathrm{rd}$, \&c., years, and m be $<n$, then

$$
\begin{aligned}
& 1+i_{1}=f(1)=e^{\delta_{0}-\frac{1}{2 n}\left(\delta_{0}-\delta_{n}\right)} \\
& 1+i_{2}=\frac{f(2)}{f(1)}=e^{\delta_{0}-\frac{3}{2 n}\left(\delta_{0}-\delta_{n}\right)} \\
& \vdots \\
& 1+i_{m-1}=\frac{f(m-1)}{f(m-2)}=e^{\delta_{0}-\frac{2 m-3}{2 n}\left(\delta_{0}-\delta_{n}\right)} \\
& 1+i_{m}=\frac{f(m)}{f(m-1)}=e^{\delta_{0}-\frac{2 m-1}{2 n}\left(\delta_{0}-\delta_{n}\right)}
\end{aligned}
$$

whence $1+i_{2}=e^{-\frac{1}{n}\left(\delta_{0}-\delta_{n}\right)}\left(1+i_{1}\right)$, and generally, if m be $<n$

$$
1+i_{n}=e^{-\frac{1}{n}\left(\delta_{0}-\delta_{n}\right)}\left(1+i_{m-1}\right)
$$

that is, since $e^{-\frac{1}{n}\left(\delta_{0}-\delta_{n}\right)}$ is independent of t,

$$
\left(1+i_{m}\right)=(1-k)\left(1+i_{m-1}\right) \text { where } k=1-e^{-\frac{1}{n}\left(\delta_{0}-\delta_{n}\right)}
$$

It appears, therefore, that the assumption that δ_{t} is of the form $\left(\delta_{0}-r t\right)$ leads to a relation between the effective rates of successive years similar to that assumed in the second paragraph of Art. 33, Chap. I. Since $r=\frac{1}{n}\left(\delta_{0}-\delta_{n}\right)=-\log _{e}(1-k)$, a $1+i_{1}=e^{\delta_{0}-\frac{1}{2 n}\left(\delta_{0}-\delta_{n}\right)}=e^{\delta_{0}+\frac{1}{2} \log _{e}(1-k)}$ $=(1-k)^{\frac{1}{2}} e^{\delta_{0}}$, it follows that the force of interest at any time t corresponding to the decreasing effective rates $1+i_{1},(1-k)\left(1+i_{1}\right), \& c$, would be $\delta_{0}+t \log _{e}(1-i)$, where $\delta_{0}=\log _{e}\left(1+i_{1}\right)-\frac{1}{2} \log _{e}(1-k)$.

As an example of the application of the formulas, let it be required to find the amounts of 1 in 10 and 40 years respectively, on the assumption that the force of interest falls by equal decrements in 20 years from the force corresponding to an effective rate of 3 per-cent to that corresponding to 2 per-cent, and thereafter remains constant.

The amount of 1 in 10 years

$$
\begin{aligned}
=f(10) & =e^{10 \delta_{0}-a^{10}\left(\delta_{0}-\delta_{20}\right) \times 100}=e^{7 \frac{1}{2} \delta_{0}+2 \frac{1}{2} \delta_{20}} \\
& =(1 \cdot 03)^{-\frac{1}{2}} \cdot(1 \cdot 02)^{2 \frac{2}{2}}=1 \cdot 31153
\end{aligned}
$$

The amount of 1 in 40 years

$$
\begin{aligned}
=f(40)=c^{10\left(\delta_{0}-\delta_{20}\right)+40 \delta_{20}} & =(1 \cdot 03)^{10} \cdot(1 \cdot 02)^{30} \\
& =2 \cdot 43482 .
\end{aligned}
$$

6. If the amoment of 1 in t years be denoted, for all values of t from 0 to m, by $f(t)$, then

$$
\begin{aligned}
& s_{m}^{\bar{m}}=1+\frac{f(m)}{f(m-1)}+\frac{f(m)}{f(m-2)}+\ldots+\frac{f(m)}{f(1)} \\
& a_{m_{i}^{\prime}}^{-}=[f(1)]^{-1}+[f(\underline{n})]^{-1}+\ldots+[f(m)]^{-1} \\
& s_{m_{i}}^{\left(n_{i}^{\prime}\right.}=\Sigma_{r=1}^{r=m_{p}} \frac{1}{p} \cdot \frac{f(m)}{f\left(\frac{r}{p}\right)}
\end{aligned}
$$

and

$$
a_{m i}^{\frac{(p)}{}}=\Sigma_{r=1}^{r=m_{p} p} \frac{1}{p}\left[f\left(\frac{r}{p}\right)\right]^{-1}
$$

Hence, if p be made infinitely great,
and

$$
\begin{align*}
& \bar{s}_{\bar{m}}=\int_{0}^{m} f(m) \cdot[f(t)]^{-1} d t \tag{4}\\
& \bar{a}_{\bar{m}}=\int_{0}^{m}[f(t)]^{-1} d t . . \tag{5}
\end{align*}
$$

These definite integrals give, in general terms, the amount and present value of a continuous amuity of 1 per annum; but, in order that they may be exactly evaluated, $[f(t)]^{-1}$-that is, $e^{-\int_{0}^{t} \delta_{0} \text { at }}$-must be an integrable function of t. Their applieation may be illustrated by an investigation of the cases in which δ_{t} has the special values assigned to it in the examples of Art. $\overline{5}$. Since $\bar{s}_{\overline{r x} i}=f(m) \cdot \overline{a_{n j}}$, it will be suffieient to eonsider the values of $\bar{a} \bar{m}$.
(a) Let δ_{t} be a constant, δ say.

Then $[f(t)]^{-1}=e^{-\delta t}$, and

$$
\overline{a_{m i}}=\int_{0}^{m} e^{-\delta t} d t=\frac{1-e^{-m \delta}}{\delta}
$$

a result which agrees, as it should do, with that obtained by ordinary algebra, on the assumption of a uniform rate of interest.
(b) Let $\delta_{t}=\delta_{0} r^{t}$.

Then

$$
\begin{aligned}
{[f(t)]^{-1} } & =e^{-\frac{\delta_{0}}{\log _{\bullet} r}(r t-1)} \\
\bar{a}_{\bar{m}} & =\int_{0}^{m} e^{-\frac{\delta_{0}}{\log _{\bullet} r}(r-1)} d t
\end{aligned}
$$

and

The definite integral thus obtained for $\overline{\bar{q}_{m \mid}}$ camnot be evaluated in a fuite form, but by expansion of the exponential and integration of the enecessive terms its value may be expressed in the infinite series

$$
\begin{aligned}
& \frac{e^{\frac{\delta_{0}}{\log _{e} r}}}{\log _{e} r}\left[m \log _{e} r-\frac{\delta_{0}}{\log _{e} r}\left(r^{m}-1\right)+\left(\frac{\delta_{0}}{\log _{e} r}\right)^{2} \frac{r^{2 m}-1}{2.2!}\right. \\
&\left.-\left(\frac{\delta_{0}}{\log _{e} r}\right)^{3} \frac{r^{3 m}-1}{3.3!}+\ldots\right]
\end{aligned}
$$

or, if λ_{i} be written for $-\frac{\delta_{0}}{\log _{e} r}$,

$$
\frac{k_{1} e^{-k}}{\delta_{0}}\left[\frac{m \delta_{n}}{k}+k_{1}\left(1-r^{m}\right)+\frac{k^{2}}{2.2!}\left(1-r^{2 m}\right)+\frac{k^{3}}{3.3!}\left(1-r^{3 m}\right)+\ldots\right]
$$

In a practical case δ_{0} might be the force of interest corresponding to $i=0.35$, and r might be $=995$, which would give $k=6 \cdot 57 ; \frac{\delta_{0}}{h}=\cdot 00501$; and $\frac{k e^{-k}}{\delta_{0}}=207$. It will be seen, therefore, that although the series given above is in all eases ultimately convergent the number of terms that would have to be calculated in any practieal case would be so large as to be prohilitive. It would be necessary, therefore, to employ some formula of approximate integration such as that given in Art. 36 of Chap. IX-the range of integration being divided into sections sclected in any given case with reference to the aetual numerical value of m.
(e) Let $\delta_{t}=\delta_{0}-r$ for all values of t up to n, and remain constant, and $=\delta_{n}$ for all greater values of t.

Then, if m be $<n$,

$$
\overline{a_{i n}}=\int_{0}^{\bullet n} e^{-\delta_{1} t+\frac{r t^{2}}{2}} d t
$$

The definite integral may be expressed in the ultimately convergent series

$$
e^{-k}\left[m+\frac{k}{3} \cdot \frac{\delta_{0}}{r}\left(1-\overline{1-\frac{m^{3}}{\delta_{0}}}\right)+\frac{k^{2}}{5} \cdot \frac{\delta_{0}}{r}\left(1-\overline{1-\frac{m^{3}}{\delta_{0}}}\right)+\ldots\right]
$$

where $k=\frac{\delta_{0}^{2}}{2 r}$, but, in this case, as in that of the series obtained in (b), the number of terms to be ealculated would, for practical values of δ_{0} and r, be prohibitive. Hence, in this case also, it woukd be necessary to employ a formula of apmroximate integration.

If n be $>n$, then obviously
and

$$
\begin{aligned}
& \bar{a}_{m_{1}}=\int_{0}^{n} e^{-\delta_{0} t+\frac{r t^{2}}{2}} d t+e^{-\delta_{0} n+\frac{r n^{2}}{2}} \cdot \frac{1-e^{-(m-n) \delta_{n}}}{\delta_{n}} \\
& \bar{s}_{m}=e^{\delta_{0} n-\frac{r n^{2}}{2}+(m-n) \delta_{n}} \cdot \int_{0}^{n} e^{-\delta_{n} \ell+\frac{r t^{2}}{2}} d t+\frac{e^{(n-n) \delta_{n}}-1}{\delta_{n}} .
\end{aligned}
$$

7. The foregoing investigations with reference to varying rates of interest might, of course, be extended to any problem in Compound Interest, but the subject is not of sufficient practical importance to call for further exemplification. In the remainder of the chapter the rate of interest involved in any given problem will be assumed to be constant.
8. The Caleulus of Finite Differences may be conveniently employed, as stated in Chap. III, Art. $3 \overline{5}$, to obtain general formulas for the amount and present value of a varying annuity.

Let $u_{1}, u_{2}, u_{3} \ldots u_{n}$ be the successive payments of a varying annuity payable annually for u years. It may be assumed, without loss of generality. that $u_{1}, u_{2} \ldots u_{n}$ are the first n terms of the series $u_{1}, u_{2} \ldots u_{n}, u_{n+1}, u_{n+2} \ldots$, where u_{n+1}, u_{n+2}, \&c., follow the same law of formation as $u_{1}, u_{2} \ldots u_{n}$. Then with the ordinary notation of Finite Differences

$$
\begin{gathered}
v u_{1}+v^{2} u_{2}+\ldots+v^{n} u_{n}=v^{[}\left[1+v(1+\Delta)+\ldots+v^{n-1}(1+\Delta)^{n-1}\right] u_{1} \\
= \\
=v \cdot \frac{1-v^{n}(1+\Delta)^{n}}{1-v(1+\Delta)} \cdot u_{1}=\frac{1-v^{n}(1+\Delta)^{n}}{i-\Delta} u_{1} \\
\\
=\frac{1}{i}\left(1+\frac{\Delta}{i}+\frac{\Delta^{2}}{i^{2}}+\ldots\right)\left(u_{1}-v^{n} u_{n+1}\right)
\end{gathered}
$$

Henee, if $(\nabla a)_{\bar{n}}$ and $(\nabla s)_{n}$ denote the present value and amount of the given annuity,

$$
\begin{align*}
&(\nabla \alpha)_{n}= \frac{u_{1}-v^{n} u_{n+1}}{i}+ \\
& \frac{\Delta u_{1}-v^{n} \Delta \|_{n+1}}{i^{2}} \tag{6}\\
&+\frac{\Delta^{2} u_{1}-v^{n} \Delta^{2} u_{n+1}}{i^{3}}+\ldots
\end{align*}
$$

and

$$
\begin{align*}
&(\mathrm{v} s)_{n}=\frac{(1+i)^{n} u_{1}-u_{n+1}}{i}+\frac{(1+i)^{n} \Delta u_{1}-\Delta \mu_{n+1}}{\imath^{2}} \\
&+\frac{(1+i)^{n} \Delta^{2} u_{1}-\Delta^{2} \mu_{n+1}}{i^{3}}+\ldots \tag{7}
\end{align*}
$$

If $(\nabla a)_{\infty}$ denote the present value of a varying perpetuity of which the successive payments are u_{1}, u_{2}, \ldots, it follows from the foregoing investigation, since v^{n} in that case vanishes, that

$$
(\nabla a)_{\infty}=\frac{u_{1}}{i}+\frac{\Delta u_{1}}{i^{2}}+\frac{\Delta^{2} u_{1}}{i^{3}}+\ldots
$$

Alternative expressions for (∇a) may be obtained in the following way :
By successive differentiation of $1+v+v^{2}+v^{3}+\cdots+v^{n-1}$

$$
\frac{d r a_{n}}{d v^{r}}=r!+\frac{\overline{r+1!}}{1!} v+\frac{\overline{r+2}!}{2!} v^{2}+\ldots+\frac{\overline{n-1}!}{\overline{n-r-1}} c^{n-r-1}
$$

Similarly, by successive differentiation of $r+r^{2}+\ldots+v^{n-r}$,
since

$$
\begin{gathered}
\frac{d}{d i}=\frac{d v}{d i} \cdot \frac{d}{d r}=-r^{2} \frac{d}{d v} \\
\frac{d r a \overline{n-r}}{d i^{r}}=(-1)^{r}\left[r!v^{r+1}+\frac{\overline{r+1}}{1!} v^{r+2}+\ldots+\frac{\overline{n-1!}}{\overline{n-r-1!}} r^{n}\right]
\end{gathered}
$$

Now
$(\nabla a)_{\bar{n}}=v u_{1}+v^{2}(1+\Delta) u_{1}+\ldots+v^{2+1}(1+\Delta)^{r} u_{1}+\ldots+v^{n}(1+\Delta)^{n-1} u_{1}$ and the coefficient of $\Delta^{r} u_{1}$ in this expression is

$$
v^{r+1}+(r+1) v^{r+2}+\frac{(r+1)(r+2)}{2!} v^{r+3}+\ldots+\frac{\overline{n-1!}}{\overline{n-r-1!r!}} v^{n}
$$

Hence

$$
\begin{array}{r}
(\nabla \alpha)_{n}=r \cdot \mathrm{a}_{n}^{-} u_{1}+r^{2} \frac{d \mathrm{a}_{\bar{n}}}{d v^{*}} \Delta u_{1}+\ldots+ \\
+\frac{r^{r+1}}{r!} \frac{d r a_{\bar{n}}}{d v^{v}} \Delta^{r} u_{1}+\ldots \tag{8}\\
\ldots+v^{n} \Delta^{n-1} u_{1} .
\end{array}
$$

or

$$
\begin{array}{r}
a_{n}-u_{1}-\frac{d(a \overline{n-1}}{d i} \Delta u_{1}+\ldots+(-1)^{r} \frac{1}{r!} \frac{d^{r} a_{n-\bar{r}}}{d i^{r}} \Delta^{r} u_{1}+\ldots \\
\ldots+v^{n} \Delta^{n-1} u_{1} . \tag{9}
\end{array}
$$

These formulas may obviously be expressed in ordinary algebraical form by substitution of the values of $\frac{d a_{n-1}}{d v}$ So., as obtained by differentiating
$\frac{1-v^{n-1}}{i}$ \&c., but the resulting expressions would be too complicated to be of practical use except in the case of a varying annuity of which the successive payments form a rational algebraic series of a low order, so that all the differences after, say, the first or second vanish. In the case of such an annuity formula (9) might also be employed to obtain an approximate value by substituting for $\frac{d a_{n-1}}{d i}$ and $\frac{d^{2} a_{n-2}}{d i^{2}}$ their approximate values $\frac{1}{2 h}\left(a_{n-1 \mid}^{i+h}-a_{n-1}^{i-h}\right)$ and $\frac{1}{h^{2}}\left(a_{n-2}^{i+h}-2 a_{n-2 l}+a_{n-2}^{i-h}\right)$.
9. It has been implicitly assumed, in obtaining formulas (6) and (7), that $u_{1}, u_{2} \ldots u_{n}$ follow some definite law. If this is not the case, u_{n+1} and its differences can be calculated on the assumption that nth differences vanish. In theory, therefore, the formulas are of general application. But the utility of these formulas, as of formulas (8) and (9), is practically limited to those cases in which the differences of the successive payments vanish after the first few orders, that is, to those cases in which u_{t} is a rational algebraic function of t of a low order. In other cases (unless the series for $(\nabla a) \vec{n}$ could be summed algebraically, as, for example, in the case of an amunity of which the successive payments are in Geometric Progression), it would be best to calculate the scparate values of the payments and to add the results. Even if the liigher differences of the payments were very small, it would not necessarily be safe to neglect them for the purpose of obtaining an approximate result, because the values of the expressions by which they have to be multiplied inerease very rap pilly.
10. The following examples illustrate the application of the formulas of Art. S:-
(a) Required the presem value at rate i of an ammity of which the payments increase in arithmetic progression. Let p be the first payment, q the annual increment, and a the present value of the first n payments. Here $u_{1}=p, \Delta u_{1}=q, u_{n+1}=p+n q, \Delta u_{n+1}=q$, and the higher differences ranish. Hence by formula (6)

$$
a=\frac{p-v^{n}(p+n q)}{i}+\frac{q-v^{n} q}{i^{2}}=p a_{n 1}+q \frac{a_{n}-u v^{n}}{i} .
$$

Or by formula (8), since

$$
\frac{d a_{\bar{n}}}{d v}=\frac{d}{d v} \cdot \frac{1-v^{n}}{1-v}=-\frac{n v^{n-1}}{1-v}+\frac{1-v^{n}}{(1-v)^{2}}=-\frac{n v^{n}}{i v^{2}}+\frac{a_{n}}{i v^{2}},
$$

$$
a=p c \mathrm{a}_{a_{1}}+q \iota^{2}\left[-\frac{n^{\prime n}}{i v^{2}}+\frac{a_{n}^{-}}{i c^{2}}\right]=p a_{\bar{n}}+q \frac{a_{\bar{n}}-n r^{n}}{i} .
$$

The present value of the perpetuity is obviously $\frac{p}{i}+\frac{q}{i^{2}}$.
The results have already been obtained by ordinary algebraical methods (Chap. III, Art. 28).
(b) Required the present value at rate i of an n-year ammity of which the successive annual payments are $1^{3}, \underline{2}^{3}, 3^{3} \ldots n^{3}$.

Here

$$
\begin{aligned}
u_{n+1} & =(n+1)^{3} . \\
\Delta u_{n+1} & =(n+2)^{3}-(n+1)^{3}=3 n^{2}+9 n+7 . \\
د^{2} u_{n+1} & =3\left(\overline{n+1^{2}}-n^{2}\right)+9=6(n+2) . \\
\Delta^{3} u_{n+1} & =6(\overline{n+1}-n)=6 .
\end{aligned}
$$

Hence by formula (6)
$a=\frac{1-(n+1)^{3} c^{n}}{i}+\frac{7-\left(3 n^{2}+9 n+7\right) c^{n}}{i^{2}}+\frac{12-6(n+2) r^{n}}{i^{3}}+\frac{\rho\left(1-v^{n}\right)}{i^{4}}$
Or by formula (9), since $\Delta u_{1}=7 ; \Delta^{2} u_{1}=12$; and $\Delta^{3} u_{1}=6$,

$$
a=a_{n 1}-7 \frac{d a_{n-1}}{d i}+6 \frac{d^{2} a_{n-\overline{3}}}{d i^{2}}-\frac{d^{3} n_{\overline{n-3}}}{d i^{3}} .
$$

(c) The first three payments of an n-vear annuity are $18,28,40$. On the assumption that the t th payment is a rational algebraic function of t of the 2 nd degree, find the present value of the annuity at rate i.

Formula (9) gives at once

$$
\begin{aligned}
a & =1 \mathrm{~s} \pi_{n}-10 \frac{d a_{\overline{n-1}}}{d i}+\frac{d^{2} a_{\overline{n-\bar{n}^{3}}}}{d i^{2}} \\
& =1 \mathrm{~s} a_{\bar{n}}+\frac{10\left(a_{\bar{n}}-n c^{n}\right)}{i}+\frac{2}{i}\left[\frac{a_{\bar{n}}--m c^{n}}{i}-\frac{n(n-1) r^{n}}{2}\right] .
\end{aligned}
$$

To employ formula (6) it would be necessary to determine, in the first instance, $u_{n+1}, \Delta u_{n+1}$, and $\Delta^{2} u_{n+1}$. This can readily be done; for

$$
\begin{aligned}
u_{n+1} & =u_{1}+n \Delta u_{1}+\frac{n(n-1)}{2} \Delta^{2} u_{1} \\
& =18+10 n+n(n-1)=n^{2}+9 n+18 \\
\dot{\Delta} u_{n+1} & =u_{n+2}-u_{n+1}=2 n+10 \\
\Delta^{2} u_{n+1} & =\Delta u_{n+2}-\Delta u_{n+1}=2
\end{aligned}
$$

Hence $\quad a=\frac{1 S-\left(n^{2}+9 n+1 S\right) r^{n}}{i}+\frac{10-(2 n+10) v^{n}}{i^{2}}+\frac{2\left(1-v^{n}\right)}{i^{3}}$.
11. If B denote the present value at rate i of any series of annual payments, $u_{1}, u_{2}, u_{3} \ldots u_{n}$, and (IB) denote the present value at the same rate of the series $u_{1},-\varkappa_{2}, 3 u_{3} \ldots m u_{n}$, then the value of (IB) can be very simply deduced from that of B by means of the Differential Calculus.

For, since

$$
\frac{d}{d l}=-r^{2} \frac{d}{d v}
$$

$$
\frac{d I}{d i}=-v^{\varepsilon} \frac{d}{d l^{2}}\left\{u_{1} v+u_{2} v^{2}+\ldots+u_{n} v^{n}\right\}
$$

$$
=-r^{2}\left\{u_{1}+2 u_{2} v+\ldots+m u_{n} v^{n-1}\right\}
$$

$$
=-v \cdot(1 \mathrm{~B})
$$

Hence

$$
\begin{equation*}
(I \mathrm{~B})=-(1+i) \frac{d \mathrm{~B}}{d i} \tag{10}
\end{equation*}
$$

For example, since the successive payments of the ordinary increasing annuity are $1,2,3 \ldots$

$$
\left.\begin{array}{rl}
(\mathrm{I} a)_{\bar{n}} & =-(1+i) \frac{d(a \bar{n})}{d i} \\
& =-(1+i)^{n(1+i)^{-\overline{n+1}} \cdot i+(1+i)^{-n}-1} \\
i^{2}
\end{array}\right) \quad \begin{aligned}
(\mathrm{I} a)_{\infty} & =-(1+i) \frac{d}{d i} \cdot \frac{1}{i} \\
& =\frac{1+i}{i^{2}}=\frac{1}{i}+\frac{1}{i^{2}}
\end{aligned}
$$

and
as in Chap. III, Art. 29.
12. In the casc of a continuous series of payments, if $\overline{\mathrm{B}}$ denote the value of $\int_{0}^{n n} v^{t} u_{l} d t$ and (IDI) that of $\int_{0}^{{ }^{n}} v^{t} t u_{l} d t$, then, as in the case of the annuity payable amually, since

$$
\begin{gathered}
\frac{d v^{t}}{d i}=-v^{2} \frac{d v^{t}}{d v}=-v \\
(I \bar{B})=-(1+i) \frac{d \bar{B}}{d \bar{i}}
\end{gathered}
$$

or, since

$$
\begin{align*}
\frac{d}{d i} & =\frac{d \delta}{d i} \cdot \frac{d}{d \delta}=\frac{1}{1+i} \cdot \frac{d}{d \delta} \\
(\mathrm{I} \overline{\mathrm{~B}}) & =-\frac{d \overline{\mathrm{~B}}}{d \bar{\delta}} \tag{11}
\end{align*}
$$

in which form the relation might have been deduced directly from the definite integrals for $\overline{\mathrm{B}}$ and ($\overline{\mathrm{I}})$, since $v^{t}=e^{-\delta t}$.

As an example of the application of formula (11), let it be required to find, on the assumption of a uniform distribution of deaths, the ralue at the beginning of the year of death of the proportion payable at the moment of death under a complete anmuity.

$$
\begin{aligned}
& \text { The required value, being }=\int_{0}^{l} t v^{t} d t \\
& \qquad=-\frac{d}{d \delta} \int_{0}^{l} v^{t} t l t=-\frac{d \overline{a_{1}}}{d \delta}=-\frac{d}{d \delta} \cdot \frac{1-e^{-\delta}}{\delta}=\frac{-\delta e^{-\delta}-e^{-\hat{o}}+1}{\delta^{2}} \\
& \quad=e^{-\delta} \frac{e^{\delta}-1-\delta}{\delta^{2}} \text { or } v \frac{i-\delta}{\delta^{2}}
\end{aligned}
$$

as in 'Text-Book, Part II, Chap. XI, Art. 5.
This result could, of course, have been obtained directly by integration by parts.
13. It has been shown in Arts. 6.11, of Chap. VT. that a good approximation to the rate of interest corresponding to a given value of an ammuity or redeemable security may be obtained by substituting $i^{\prime}+p$ for i in the algebraical expression for the value of the anmuity or security-where i^{\prime} is a rate which very nearly gives the requisite valueexpanding in powers of ρ, and taking the first or second approximation to the value of ρ. The method may be developed more simply and generally by the use of the Differential Caleulus.

For let u be the given value of any function of an unknown rate of interest i; and suppose that it has been found by trial (or by reference to the 'Talles, if the function is one of which the values have been tabulated for various values of i) that at rate i^{\prime} the value of the function is $u^{\prime}-a$ value differing from u by a small quantity only-and let $i=i^{\prime}+\rho$, so that the given function is a funetion of $i^{\prime}+\rho$. Then by 'Taylor's 'Theorem,

$$
u=u^{\prime}+\rho \frac{d u^{\prime}}{d i^{\prime}}+\frac{\rho^{2}}{2!} \frac{d^{2} u^{\prime}}{d i^{\prime 2}}+\ldots
$$

As a general rule, the successive terms in the expansion decrease with considerable rapidity, so that a fairly close approxmation to ρ may be obtained by neglecting all terms after the seennd, whence $\rho=\frac{u-u^{\prime}}{\frac{d u^{\prime}}{d i^{\prime}}}$ and $i=i^{\prime}+\frac{u-u^{\prime}}{\frac{d u^{\prime}}{d i^{\prime}}}$ approximately. Formula (2) of Chap. VI, and the corresponding formula (on page 110) for the redeemable security, may of course be deduced from this result $b y$ differentiating a_{n}^{\prime} and $\mathrm{C}+\frac{!}{i}^{\prime}\left(\mathrm{C}-\mathrm{K}^{\prime}\right)$ respectively. But a more practical method of applying the result is to substitute for $\frac{d u^{\prime}}{d i^{\prime}}$ its approximate value $\frac{1}{2 h}\left(u^{i}+h-u u^{i^{\prime}-h}\right)$. This leads to the convenient formula

$$
\begin{equation*}
i=i^{\prime}+h \frac{u-u^{\prime}}{\frac{1}{2}\left(u^{i^{\prime}+h}-u^{i^{\prime}-h}\right)} \quad . \quad . \quad . \quad . \tag{12}
\end{equation*}
$$

A eloser approximation could be obtained by retaining the term in ρ^{2}, and substituting $\frac{\rho}{\underline{2}} \frac{l^{2} u^{\prime}}{a i^{\prime 2}} \times \rho_{1}$ for $\frac{\rho^{2}}{2} \frac{d^{2} u^{\prime}}{a l^{\prime 2}}$, where ρ_{1} is the first approximation to the value of ρ,
whence

Since

$$
\frac{d^{2} u^{\prime}}{d e^{\prime 2}}=\frac{1}{h^{2}}\left(u^{i^{+}+h}-2 u^{\prime}+u^{i^{\prime}-h}\right): \text { pproximately }
$$

this gives

$$
i=i^{\prime}+h \frac{u-u^{\prime}}{\frac{1}{\underline{u}}\left(u^{i^{\prime}+h}-u^{i^{\prime}-h}\right)+\frac{u-u^{\prime}}{u^{i^{\prime}+h}-u^{i^{\prime}-h}}\left(u^{i^{\prime}+h}-2 u^{\prime}+u^{i^{\prime}-h}\right)} . \quad . \quad \text { (13). }
$$

Fommla (12) is, in effect, a first difference interpolation formula, although obtained by an indirect method. For it may be written in the form $\frac{u-u^{\prime}}{u^{i^{\prime}+h}-u^{i^{\prime}-h}}=\frac{i-i^{\prime}}{2 h}$, which merely gives expression to the approximately correct assmoption-for comparatively small differences of i that the difference between the values of u corresponding to the rates i and i^{\prime} bears the same proportion to the difference between the values
corresponding to the rates $i^{\prime}+h$ and $i^{\prime}-\dot{h}$ as the difference between i and i^{\prime} hears to that between $i^{\prime}+h$ and $i^{\prime}-h$. 'This is an obvious gencralisation of the method of first-difference interpolation employed in Arts. 13-17 of Chap. VI. It will be useful to consider in the following articles eome further practical applications of the method of interpolation to the problem of approximating to an unknown rate of interest.
14. The general theory of interpolation may be iliustrated by the annexed diagram, in which $\mathrm{P}_{-2} \mathrm{~N}_{-2}, \mathrm{P}_{-1} \mathrm{~N}_{-1}$, de., represent the values of a continnous function corresponding to the values $O N_{-2}, O N_{-1}, \& c$., of the variable. and PN represents an unknown value corresponding to a griven value $O N$ of the variable :

The ordinary method of first-difference interpolation, as exemplificd in Arts. 13-17 of Chap. VI, gives as an approximation to the required interpolated value- $\mathrm{P}^{\prime} \mathrm{N}$, where P^{\prime} is the point in which the ordinate at N cuts the straight line joining P_{0} to P_{1}. But, unless the function presents singularities in the neighbourhood of P (which will not be the case with functions of the class under consideration in this book), it is clear that a better approximation will be obtained by taking the ordinate at N of a curve drawn through the points $\mathrm{P}_{0}, \mathrm{P}_{1}$, and one or more of the points $P_{-1} P_{2}$, \&c. This curve will not coincide exactly with the curve representing the function-unless the latter is a rational algebraical function of a lower degree than n, where the curve is drawn through n points-but it may be expected to depart comparatively little from it throughout the range between the two end points. For all practical purposes it is sufficient to draw the curve through threc-or at the most four-points in the immediate neighbourhood of P ; if (as in the diagram) N lies between N_{0} and N_{1} and is nearer to N_{0}, the best points
to select will obriously be $\mathrm{P}_{-1}, \mathrm{P}_{0}, \mathrm{P}_{1}$, and (if a fourth point be taken) P_{2}.
Fur the purpose of determining the approximate rate at which a compound interest function has a given value u, the method may be applied either directly by making i the ordinate of the curve and u the abscissa-that is. by regarding i as a function of u-or indirectly by making u the ordinate and i the abseissa-that is by regarding u as a finction of i.
15. Consider, tirst, the direct application of the method, and suppose that it is required to obtain in interpolated value of ifrom three given values of the function, viz., from the values u_{-1}, u_{0} and u_{1} corresponding to rates i_{-1}, i_{0}, and i_{1}. The general equation to the curve drawn through three points is an algelnaical function of the second degree. It may be assumed therefore, that

$$
i=\mathrm{A}+\mathrm{B} u+\mathrm{C} u^{2}
$$

and the values of A, B, and C will be determined by the given valnes

$$
\begin{aligned}
& i_{-1}=\mathrm{A}+\mathrm{B} u_{-1}+\mathrm{C}^{2} u^{2}-1 \\
& i_{0}=\mathrm{A}+\mathrm{B} u_{0}+\mathrm{C}^{\prime} n_{0}^{2} \\
& i_{1}=\mathrm{A}+\mathrm{B} u_{1}+\mathrm{C}^{\prime} u_{1}^{2} .
\end{aligned}
$$

The elimination of A, B, and C from these equations leads to the result

$$
i=i_{-1} \frac{\left(u-u_{0}\right)\left(u-u_{1}\right)}{\left(u_{-1}-u_{0}\right)\left(u-1-u_{1}\right)}+i_{0} \frac{\left(u-u_{1}\right)\left(u-u_{-1}\right)}{\left(u_{0}-u_{1}\right)\left(u_{0}-u_{-1}\right)}+i_{1} \frac{\left.\left(u-u_{-1}\right)\left(u-u_{0}\right)\right)}{\left(u_{1}-u_{-1}\right)\left(u_{1}-u_{0}\right)} *
$$

If the given values of the function were equi-different-that is, if $u_{0}-u_{-1}$ were $=u_{1}-u_{0}$-this result would reduce to the ordinary second central difference formula for i in terms of u. But it is not usual to tabulate the values of i corresponding to given values of compound interest functions. In practice, the values of u will be tabulaterl (or will be able to be readily ealculated from the tabulated values of simpler functions) for given values of i, so that the available data will be the values u_{-1}, u_{0}, u_{1} corresponding to the consecutive equi-different rates of interest $i_{0}-h . i_{0} . i_{0}+h$. In these circumstances the expression for i will he found, on substitution of $i_{0}-h$ and $i_{0}+h$ for i_{-1} and i_{1}, respectively, and on simplification, to take the form

$$
\begin{equation*}
i=i_{0}+\eta_{1} \frac{u-u_{0}}{u_{1}-u_{-1}}\left[\frac{u_{1}-u_{-1}-u_{1}-u_{1}}{u_{1}-u_{0}} u_{0}-u_{-1}\right] . \tag{14}
\end{equation*}
$$

[^2]16. Consider next the indirect application of the method, and suppose that the data are the values $u_{-1}, u_{0}, u_{1}, u_{2}$ corresponding to the rates $i_{0}-h, i_{0}, i_{0}+h$, and $i_{0}+2 h$. It might be assumed that $u=\mathrm{A}+\mathrm{B} i+\mathrm{C} i^{2}+\mathrm{D} i^{3}$ (or $\mathrm{A}+\mathrm{B} i+\mathrm{C}^{2}$, if only three values are used), and the constants could be determined as in the preceding Article. But, as the rates $i_{0}-h, i_{0}$, \mathcal{E}., are equi-different it will be simpler to use Finite Differences.

Let i (the interpolated rate to be found) $=i_{0}+\rho$. Suppose that an interpolation based on the three values u_{-1}, u_{0}, u_{1} is required. Then differences above the second must be neglected, and with the notation of ordinary central differences

$$
u=u_{0}+a_{0} \frac{\rho}{h}+\frac{b_{0}}{2} \cdot \frac{\rho^{2}}{h^{2}} .
$$

Hence as a first approximation $\rho=h \frac{u-\mu_{0}}{a_{0}}$, and

$$
\begin{equation*}
i=i_{0}+h \frac{u-u_{0}}{a_{0}} \tag{15}
\end{equation*}
$$

and \boldsymbol{j}_{5} as a second approximation (obtained by substitution of $h \frac{u-u_{0}}{\alpha_{0}} \rho$ for ρ^{2} in the central difference formula)

$$
\begin{equation*}
i=i_{0}+k \frac{1}{\frac{u_{0}}{u-u_{0}}+\underline{b_{0}}} . \tag{16}
\end{equation*}
$$

It will be readily seen that Formulas (15) and (16) are identical with Formula (12) and (13).

For an interpolation based on the four values- $u_{-1}, u_{0}, u_{1}, u_{2}-$ it will be more convenient to use central differences relative to the interval between u_{0} and u_{1}, instead of to u_{0}. If $\alpha_{0}, \beta_{0}, \gamma_{0}$, denote the successive differences, so that $\alpha_{0}=\Delta u_{0} ; \quad \beta_{0}=\frac{1}{2} \Delta^{2}\left(u_{-1}+u_{0}\right)$; and $\gamma_{0}=\Delta^{3} u_{-1}$, then, since differences above the third must be neglected

$$
u=u_{0}+\left(a_{0}-\frac{1}{2} \beta_{0}\right) \frac{\rho}{h}+\left(\frac{1}{2} \beta_{0}-\frac{1}{4} \gamma_{0}\right) \frac{\rho^{2}}{h^{2}}+\frac{1}{6} \gamma_{0} \frac{\rho^{3}}{h^{3}}
$$

This gives, as a first approximation,

$$
\begin{equation*}
i=i_{0}+h \frac{u-u_{0}}{\alpha_{0}-\frac{1}{2} \beta_{0}} \cdots \tag{17}
\end{equation*}
$$

and ats a second (if ${ }_{4}^{1} \gamma_{0}$-which will always be relatively insignificant-be neglected).

$$
i=i_{0}+h \frac{1}{\frac{u_{0}-\frac{1}{2} \beta_{0}}{u-u_{0}}+\frac{1}{2\left(a_{0}-\frac{1}{2} \beta_{0}\right)}} \cdot \text {. . . . (15) }
$$

It may be observed that the formulas of this Article have been nbtained on the assumption that the given value u is between u_{0} (the nearest tabulated or ealculated value) and u_{1}, whereas it may, in praetice, be found to be between u_{0} and u_{-1}. The argument, however, holds equally whether h is positive or negative, so that the formulas may be applied to a case in which u is between u_{0} and u_{-1} by merely reversing the order of the u 's.
17. For purposes of illustration and comparison, it will be useful to apply the formulas of the preceding Articles to the annuity and redeemable security taken as examples in Chap. VI.
(a) In the ease of the amnuity the given value is $\frac{1}{a_{301}}=05$. The nearest value to this in Table V is the 3 per-cent value- 051019 -and as in this Table the values are only given for differences of one-half percent in the rate of interest above $2 \frac{1}{2}$ per-cent, the best available values for interpolation are the $3 \frac{1}{2}, 3,2 \frac{1}{2}$ and 2 per-cent values-taken in this order, beeause the given value is between the 3 and $2 \frac{1}{2}$ per-cent values. The successive values and their differences are as follows:

Here $\quad h=-.005 ; u=\cdot 05 ; u_{0}=\cdot 051019$

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \Delta\left(u_{-1}+u_{0}\right)=-0032965 ; \quad b_{0}=\Delta^{2} u_{-1}=\cdot 000111 \\
& a_{0}=\Delta u_{0}=-0032+1 ; \beta_{0}=\frac{1}{2} \Delta^{2}\left(u_{-1}+u_{0}\right)=\cdot 000112
\end{aligned}
$$

Hence by formula (12) or (15)

$$
i=03-\frac{.001019}{.006593} \times \cdot 01=\cdot 028454
$$

By formula (13) or (16)

$$
i=03-\frac{.001019}{.006593-\cdot 000034} \times \cdot 01=\cdot 028446
$$

By formula (14)

$$
i=03-005 \frac{1019}{6593}\left(\frac{437 \mathrm{~L}}{32 \mathrm{~L}}+\frac{2222}{3352}\right)=028445
$$

By formula (17)

$$
i=03-005 \frac{.001019}{.003297}=\cdot 024455
$$

and, finally, by formula (18)

$$
i=\cdot 03-\cdot 005 \frac{1}{\frac{3297}{1019}-\frac{56}{3297}}=\cdot 028446 .
$$

It will be seen that formulas (13) and (18) give the rate correctly to the sixth place of decimals, and that the two simpler formulas-(12) and (17) - give results differing from the true rate by less than 00001 -that is, by less than one farthing in the rate per-cent. The latter are, therefore, sufficiently accurate for any practical purpose. Formula (12) is the more convenient, as it involves three values only.
(b) In the case of the $4 \frac{1}{2}$ per-cent debenture redeemable in 25 years at $112 \frac{1}{2}$, the given value is 120 , and the values of the debenture calculated at $1 \frac{1}{2}, 1 \frac{3}{4}, 2$ and $2 \frac{1}{4}$ per-cent half-yearly from the expression $112 \frac{1}{2} v^{50}+2 \frac{1}{4} a_{\overline{50}}$ are, with their successive differences, as follows:

	i	A	$د^{2}$
	$\cdot 015$	132•187	
	. 0175	121.821	1.045
	. 02	112.500	930
	. 0295	104•109	
Here	$h=0025$;	$=120 ; u_{0}$	
	$a_{0}=-9.81$; $b_{0}=1 \cdot 0$	
	$\mu_{0}=-932$	$\beta_{0}=\cdot 987$	

Hence by formula (12)

$$
i=0175+\frac{1 \cdot 821}{39 \cdot 374} \times \cdot 01=\cdot 017963
$$

By formula (13) or (16)

$$
i=\cdot 0175+.0025 \frac{1}{\frac{9.8435}{1 \cdot 8.21}-\frac{1 \cdot 045}{19 \cdot 687}}=\cdot 017967
$$

and by formula (18)

$$
i=.0175+.0025 \frac{1}{\frac{9 \cdot 81475}{1.521}-\frac{.9875}{19 \cdot 6295}}=.017968
$$

The last of these approximations is correct to the sixth place, but formula (12) again gives an cror of less than one farthing in the annual rate per-cent.

It may be noted, however, that the example is one that is rather favourable for the application of an ordinary central difference formula, because the true rate differs comparatively little from the central rate of the three on which the interpolation is based. If the true rate had been -01875-to take an extreme case-formula (12) would have given -018715, which involves an error of nearly $2 d$. in the annual rate per-cent. In this case formula (18) -which is well adapted to a rate about midway between two consecutive values-gives 018749.

Table I.
Amount of I : viz., $(1+i)^{n}$.

n	I\%	1 7 \%	$1 \frac{1}{2} \%$	1 3 \%	2\%	24\%	n
1	1.01000	1.01250	101500	1.01750	1.02000	1 02250	1
2	I 02010	I 02516	$1 \cdot 03023$	1.03531	$1 \cdot 0.40 .40$	I ${ }^{\circ} \mathrm{O} 4551$	2
3	$1 \cdot 03030$	I'03797	$1{ }^{\circ} 04568$	I'05342	I'06121	1.00903	3
4	I 04060	$1 \cdot 05095$	1 -obi 36	I'07156	1 'OS243	1 '09308	4
5	$1 \cdot 05101$	1.00408	100728	I '09062	I'Io40S	1'11768	5
6	1.06152	1.07738	1.09344	I 10970	1'12616	I. 14283	6
7	1.07214	1.09085	$1 \cdot 10954$	I'12912	1.14869	I. 16854	7
8	$1 \cdot 0 \$ 280$	I'I0449	I•12649	$1 \cdot 14858$	1'17166	$1 \cdot 1940^{\circ} 3$	S
9	1.09369	I'IIS'29	I'14339	I 16899	I'19509	I. 2217 I	9
10	I'10,462	I'13227	$1 \cdot 16054$	I'18944	1.21899	I 24920	10
11	I.11567	I'14642	117795	1. 21026	I 24337	I 27731	1 I
12	$1 \cdot 12683$	I'16075	1.19562	I 23144	1.26S 24	1.30605	12
13	1.13809	I'17526	1.21355	1 2 ,399	1.29361	1'33544	I 3
14	I'14947	I'18995	$1 \cdot 23156$	I 27492	1.31948	1.36548	14
15	I'16097	I 20483	I. 25023	I'29723	I 34587	1.3962 I	15
16	I'17258	1.21989	I.26899	I'31993	1.37279	1.42762	16
17	1.18430	1.23514	$1 \cdot 28502$	1.34303	1.40024	1.45974	17
18	I'19615	$1.2505{ }^{\circ}$	1.30734	I. 36653	1.42825	1449259	15
19	I $20 \$ 11$	I 26621	1.32695	1'39045	I 45681	1.52617	19
20	1-22019	$1 \cdot 28204$	133680	1.41478	1.48595	1.5605	20
21	I 23239	I 29806	1 $\cdot 36706$	I 43954	1.51567	I. 59562	21
22	I $24.27{ }^{\text {2 }}$	I'31429	1:38756	$1 \cdot 46473$	1.54598	1.63152	22
23	1.25716	1-33072	$1.403_{3}{ }^{\circ}$	I 49036	1.57690	1.66823	23
24	$1 \cdot 26973$	1•34735	1.42950	1.51644	1.60844	1.70577	24
25	I 28243	$1 \cdot 36419$	I 45095	I.54298	$1{ }^{6} 64061$	$1 \cdot 74415$	25
26	I-29526	1.38125	147271	1.56908	1.67342	1.78339	26
27	$1 \cdot 30821$	1.3985	$1.49+80$	I.59746	1.70689	1.82352	27
2 S	1.32129	1.41599	1.51722	1.62541	1.74102	I 86454	28
29	1.33450	1.43369	I.53998	$1 \cdot 65356$	177584	190650	29
30	I'347 ${ }^{\text {¢ }} 5$	1.45161	1.50308	1.68280	I- I 3^{6}	1.94939	30
31	I'36133	I 46976	I'58653	171225	1. S_{4759}	1.99325	31
32	1.37494	$1 \cdot 48813$	1.61032	1.74221	1. 58454	$2.03{ }^{\circ} 10$	32
33	$1 \cdot 38569$	1.50673	1.63448	1.77270	1.92223	2.08396	33
34	I. 40258	I. 52557	1.65900	I $\mathrm{SO}_{3} \mathrm{~F} 2$	1.96065	2.13085	34
35	1.41660	I'54464	-68358	I•35329	1.99989	2.17879	35
36	1.43077	$1 \cdot 56394$	1.70914		2.03989	$2 \cdot 22782$	36
37	1'4450S	1.58349	1.73475	I'90009	$2 \cdot 08069$	2.27794	37
3 S	$1 \cdot 45953$	I'00329	1.76080	1.93334	2.12230	2.32920	$3{ }^{3}$
39	1.47412	I.62333	1.75721	1.96717	2.16474	2.38160	39
40	$1 \cdot 48586$	I.64362	I•SI402	2.00160	$2 \cdot 20804$	2.43519	40
41	$1 \cdot 50375$	1.66416	I $\cdot S_{4123}$	$2 \cdot 03663$	2.25220	2.48998	41
42	1.51879	1.68497	1- $¢ 6885$	$2 \cdot 07227$	$2 \cdot 2972.4$	$2 \cdot 54601$	42
43	$1.5339{ }^{\text {S }}$	1.70603	I-89688	$2 \cdot 10853$	$2 \cdot 34319$	2.60329	43
44	1.549,32	I.72735	I'92533	$2 \cdot 14543$	$2 \cdot 39005$	2.06156	44
45	$1 \cdot 56481$	I•74895	I'95421	2.18295	2.43785	2.72176	45
46	1.580,46	1.77081	1.98353	2.22118	2.486 ¢́	2.78300	46
47	I. 59626	I•79294	2.01328	$2 \cdot 26005$	2.53634	$2 \cdot 84561$	47
48	1.61223	I•'S535	2.04348	$2 \cdot 29960$	2.55707	2.90964	48
49	I 62535	1.83805	2.07413	$2 \cdot 3.3984$	$2 \cdot 63881$	2.97511	49
50	$1 \cdot 64463$	I - 661 c 2	2.10524	2:38079	$2 \cdot 69159$	3.04205	50
60	I. 81670	$2 \cdot 10718$	2.44322	$2 \cdot 8_{315}$	$3 \cdot 2 \mathrm{SIO}_{3}$	$3 \cdot \mathrm{SoOI} 3$	60
70	2.00676	$2 \cdot 351,0$	$2 \cdot 33546$	3.36829	$3 \cdot 99956$	4.74714	70
So	2.21672	$2 \cdot 7$ 1 49	3.29066	4.00639	$4 \cdot 85+4$	5.93015	So
90 100	2.44863 2.70481	$3.05: 1$	$3 \cdot 81895$	4.76533	$5 \cdot 94313$	$7 \cdot 40796$	90 100
100	$2 \cdot 70481$	3.46340	4.4 .3205	566816	$7 \cdot 24465$	9.25405	100

Tables I.
Amount of I: riu., $(1+i)^{n}$.

n	2 2 \%	3\%	$3 \frac{1}{2} \%$	4.	42\%	5\%	n
1	1.02500	1.03000	1.03500	1 0.4000	1. 04500	1.05000	1
2	1.05063	1.06090	1.07123	$1.0 \$ 160$	$1 \cdot 09203$	$1 \cdot 10250$	2
3	I.07689	I 09273	$1 \cdot 10572$	1.12486	1.14117	1. 15763	3
4	I IO3SI	I'12551	I'1.4752	1.16986	1.19252	1.21551	4
5	1.13141	I'15927	I'IS769	1.21665	I 2.46 I S	$1 \cdot 27628$	5
6	115969	I'19405	I. 22926	1 26532	$1 \cdot 30226$	1.34010	6
7	I. IS 69	$1 \cdot 22957$	I. 2722 S	1.31593	1.360S6	1.40710	7
S'	I.21540	I $\cdot 26077$	1.316SI	1.36557	1.42210	1.47746	5
9	I 24886	I'30477	I 36290	I.42331	1.48610	155133	9
10	I 2 SOOS	I 34392	1.41060	: 45024	1.55297	$1.62 S 59$	10
11	1•31209	$1 \cdot 38423$	I 45997	I'53945	1.622S5	171034	II
12	$1 \cdot 34450$	1.42576	1.51107	1.60103	I 695 SS	I 7955^{56}	12
13	I 375 S 5	I. 46853	1.56396	1.66507	1.77220	I SS 565	13
14	1.41297	I'51259	1.61869	1.73108	I 55194	1.97993	14
15	I 44830	I 555797	I 67535	I ${ }^{\text {Soog }} 4$	I'9352S	2.07593	15
16	I. $4 \mathrm{~S}_{451}$	1.60471	$1 \cdot 73399$	I \cdot S7298	2.02237	$2.182 S$?	16
17	$1 \cdot 52162$	I. 652 S 5	1.79468	1.94790	2.11338	$2 \cdot 29202$	17
15	I. 55966	170243	1. 3_{5749}	2.025 S 2	$2 \cdot 20{ }^{2} 45$	$2 \cdot 40662$	15
19	I. 59865	1.7535	I 92250	2.106S5	$2 \cdot 30756$	2.52695	19
20	$1 \cdot 63862$	I 80611	I.98979	$2 \cdot 19112$	2.41171	2.65330	20
2 I	I 67953	I - 86029	205943	$2 \cdot 27877$	2.52024	$2 \cdot 78596$	2 I
22	1 72157	1.91610	2.13151	$2 \cdot 36992$	2.63365	2.92526	22
23	1776461	I'97359	$2 \cdot 20611$	2.46472	2.75217	3.07152	23
2.4	I-SoS73	2.03279	$2 \cdot 28333$	2.56330	2.57601	3.22510	24
25	I $\cdot 85394$	2.09375	$2 \cdot 36324$	2.66554	3.00543	3.38635	25
26	I 900029	$2 \cdot 15659$	2.44596	$2 \cdot 77247$	3.1406S	3.55567	26
27	1.94750	$2 \cdot 22129$	2.53157	$2 \cdot 88337$	$3 \cdot 2 \mathrm{~S} 201$	$3 \cdot 73346$	27
28	I.99650	$2 \cdot 28793$	2.62017	2.99570	3.42970	3.92013	2 S
29	$2 \cdot 04641$	$2 \cdot 35657$	$2 \cdot 71188$	3.11S65	3.5 S 404	+ 11614	29
30	$2 \cdot 09757$	2.42726	2.80679	3.24340	$3 \cdot 74532$	432194	30
31	2.15001	$2 \cdot 50008$	2.90503	3.37313	3.91386	$4 \cdot 53 \mathrm{So4}$	31
32	$2 \cdot 20376$	2.57508	3.0067 I	3.50806	4.0 998	4.76494	32
33	$2 \cdot 25>85$	2.65234	3.11194	3.64838	4.27403	$5^{\circ} \mathrm{OO} 319$	33
34	2.31532	2.73191	$3 \cdot 22086$	$3 \cdot 79432$	4.46636	5.25335	34
35	$2 \cdot 37321$	$2 \cdot \mathrm{Si} 386$	3*33359	3.94609	4.66735	$5 \cdot 51602$	35
.36	2.43254	$2 \cdot 89828$	3.45027	4*10393	4.87738	579182	36
37	2.49335	2.98523	3.57103	4.26S09	5.09686	6.08141	37
38	2.35568	3.07478	$3 \cdot 69601$	4.4388 I	5:32622	6.38548	35
39	2.61957	$3 \cdot 16703$	$3 \cdot 82537$	4.61637	5.56590	6.70475	39
40	2.68506	$3 \cdot 26204$	3.95926	$4 \cdot$ Soloz	$5 \cdot 81636$	7*03999	40
41	2.75219	3*35990	4.09783	4.99306	6.07810	7339199	41
42	2.82100	3.46070	$4 \cdot 24126$	5•19278	$6 \cdot 35162$	7×76159	42
43	$2 \cdot \mathrm{S9I} 52$	3.56452	$4 * 38970$	$5 \cdot 40050$	6.63744	S.14967	43
44	2.96351	3.67145	4.54334	$5 \cdot 61652$	$6 \cdot 93612$	S.55715	44
45	$3^{\circ} 03790$	$3 \cdot 75160$	4.70236	$5 \cdot 84118$	$7 \cdot 24825$	$8 \cdot 98501$	45
46	3.113S5	$3 \cdot S 9504$	$4 \cdot 86694$	$6.074 S_{2}$	7×5742	$9 \cdot 43 \ddagger 26$	46
47	3.19170	4 O1190	$5^{\circ} \mathrm{O} 3728$	6.31782	7.91527	9.90597	47
$4{ }^{\circ}$	3.27149	413225	$5 \cdot 21359$	6.57053	S.27146	$10 \cdot 40127$	43
49	3.35328	4.25622	5*39606	$6 \cdot 53335$	S.64367	10.92133	49
50	$3^{\circ}+37 \mathrm{II}$	4*3 3 391	$5 \cdot 58493$	7•1066	9.0326 .4	11.46740	50
60	4*39979	5.89160	$7 . \mathrm{S} 7 \mathrm{So9}$	10.51963	$14^{\circ} \mathrm{O} 2741$	18.67919	60
70	5.63210	7.91752	$11.112 S 3$	15.57162	21.75414	$30: 42643$	70
80	$7 \cdot 20957$	$10 \cdot 64089$	15.67574	$23^{\circ} \mathrm{O} 49 \mathrm{So}$	$33 \cdot 33010$	$49^{\circ} 56144$	80
$\begin{array}{r}90 \\ \hline 00\end{array}$	9:22356	14.30047	22.11218	34.11933	52.53711	80.73037	$\begin{array}{r}90 \\ \hline\end{array}$
100	11.81372	19.21563	3I'19141	50.50495	SI.58S52	131.50126	100

Table II.
Pieser:t lalue of 1 : viz, v^{π}.

n	1\%	1 4 \%	I $\frac{1}{2} \%$	13\%	2\%	24\%	n
1	'99010	$\cdot 98765$	-9S522	.98280	-9S039	-97800	1
2	-98030	- 97546	-97066	-96590	'96117	. 95647	2
3	-97059	-96342	-95632	'94929	. 94232	-93543	3
4	-9609S	-95152	-9421S	'93296	. 92385	91484	4
5	-95147	'93978'	-92S26	-91691	'90573	- 89.471	5
6	-94205	-92817	'91454	-90114	-88797	-87502	6
7	93272	. 91672	'90103	. 88564	- 87056	- ${ }^{5} 5577$	7
S	-9234	-90540	-85771	- 870.41	- 85349	- 33694	8
9	-91434	- 89422	- 87459	-S5544	-83676	-SiS52	9
10	-90529	-SS3IS	- 86167	- $\$_{4073}$	-82035	- 80051	10
II	-S9632	-8722S	-84893	-S2627	- 80426	-7S290	I I
12	- 38745	- 66151	-83639	-S1206	$\cdot 78849$	$\cdot 76567$	12
13	-S7866	- 9_{5087}	- 82403	-79809	-77303	74852	13
14	-86996	- 84037	-SIIS5	$\cdot 78436$	$\cdot 75788$	73234	14
15	- S6135	-82999	'799S5	$\cdot 77087$	-74301	$\cdot 71623$	15
16	- 85282	-S1975	$\cdot 7 \mathrm{CSO}_{3}$	$\cdot 75762$	-72845	- 70047	16
17	- S_{4438}	- 80963	-77639	-74459	71416	-68505	17
1 S	- 83602	$\cdot 79963$	-76491	-73178	$\cdot 70016$	-66998	18
19	- 22774	$\cdots 5976$	75361	-71919	-6S643	-65523	19
20	-Si954	\cdots 7SOOI	-742.47	$\cdot 70652$	-67297	-64082	20
2 I	-81143	$\cdot 77038$	-73:50	-69467	-6597S	-62672	21
22	-80340	76087	-72069	. 68272	-64684	-61292	22
23	-79544	$\cdot 75147$	71004	-67098	-63416	-59944	23
24	$\cdot 75757$	-74220	-69954	-65944	-62172	-58625	24
25	-77977	-73303	-6892 I	-6.4810	-60953	-57335	25
26	'77205	72398	-67902	.63695	- 5975 S	-56073	26
27	'76440	$\cdot 71505$	-66899	-62599	$\cdot 58586$	-54839	27
28	- 75684	$\cdot 70622$	-65910	-61523	'57437	-53632	28
29	- 74934	-69750	-64936	-60465	56311	- 52.452	29
30	$\cdot 74192$	-6SSS9	-63976	-59425	-55207	-51298	30
31	$\cdot 73458$	-6803S	-6303I	-58403	-54125	-50169	31
32	$\cdot 72730$	-67198	-62099	- 57398	- 53063	-49065	32
33	-72010	-66369	-61182	-56411	-52023	-47986	33
34	$\cdot 71297$	-65549	-60277	-5544	-51003	-46930	34
35	$\cdot 70591$	-64740	-59387	-54487	-50003	-45S97	35
36	-69892	-63941	-58509	'53550	${ }^{-49022}$	-44887	36
37	-69200	-63152	-57644	-52629	-4806 I	-43S99	37
38	-6S515	. 62372	-56792	-51724	-47119	-42933	3^{8}
39	-67837	-61602	-55953	-50834	-46195	-41989	39
40	-67165	-6084 1	-55126	-49960	- 45289	- 41065	40
41	-66500	-60090	'54312	-49101	-44401	-40161	41
42	- 65842	- 59348	-53509	- 48256	-43530	-39277	42
43	-65190	- 58616	-52718	-47426	-42677	$\cdot 38413$	43
44	-64545	-57892	-51939	-46611	-41840	-37568	44
45	-63906	-57177	$\bigcirc 51171$	-45So9	-41020	-36741	45
46	. 63273	-5647 I	-50415	-4502 I	-40215	-35932	46
47	-62646	-55774	- 49670	-44247	-39427	$\bigcirc 35142$	47
4 S	- 62026	- 55086	-4S936	- 43456	$\cdot 38654$	34369	48
49	-61412	-54406	-48213	-42738	-37S96	-33612	49
50	-60804	-53734	-47500	42003	-37153	$\cdot 32873$	50
60	-55045	-47457	-40930	-35313	-30478	-26315	60
70	-49.331	41913	-35268	-29689	$\cdot 25003$	-21065	70
So	- 45112	-37017	-303S9	-24960	-20511	-16863	80
90	-40839	-32692	-26185	- 20985	-16S26	-13499	90
100	-3697 I	-28873	$\cdot 22563$	-17642	-13803	-10806	100

T'able 11.
Present Value of I : viz., v^{n}.

n	$2 \frac{1}{2} \%$	3\%	$3 \frac{1}{2} \%$	4\%	42\%	5\%	n
1	${ }^{9} 97561$.97087	-96618	-96154	-95694	${ }^{95253}$	1
2	.95151	. 94260	93351	. 92450	-91573	-90773	2
3	-92860	-91514	-90194	-sb900	-7630	-86384	3
4	-90595	- S8S49	- 7144	- 55450	- 8355	- S_{2270}	4
5	-58355	-66261	- 4197	- 2193	. 80245	$7^{85} 35$	5
6	- 86230	- 83748	${ }^{-1} 1350$	-79031	76790	74622	6
7	- ${ }^{\text {S }} 4127$	- $\mathrm{SI} 1309^{-7509}$	${ }^{7} 75599$	775992	$\bigcirc 73443$.71008	${ }_{8}^{7}$
	- 82075	$789+1$.76642	75941	73009	$\begin{array}{r}73319 \\ .67290 \\ \hline\end{array}$	${ }^{6} 67684$	8
10	${ }^{7} 7120$	$\cdot 74409$	${ }^{7} 70892$	-67556	${ }^{6} 64393$	${ }^{-61391}$	10
11	${ }^{7} 76214$	$7{ }^{2242}$	$\cdot 68495$	-64958	-61620	${ }^{5} 5468$	11
12	74356	$7 \mathrm{FOI}_{3} 8$	-66175	- 62460	-58966	-55684	12
13	72542	-68095	-63940	-60057	-56427	-53032	13
14	70773	-66112	-61778	-57748	-53997	-50507	14
15	-69047	-64186	-59689	-55526	-51672	${ }^{4} 4102$	15
16	${ }^{6} 67362$	-62317	-57671	-53391	-49447	${ }^{4} 5811$	16
17	-65720	-60502	-55720	-51337	-47318	43630	17
18	-64117	-58739	$\cdot 53836$	-49363	45280	-41552	18
19	-62553	-57029	-52016	-47464	43330	-39573	19
20	-61027	-55368	-50257	45639	$\cdot 41464$	$\checkmark 37689$	20
1	-59339	-53755	-48557	$\cdot_{43} \mathrm{SS}_{3}$	-39679	-35894	21
22		-52159	-46915	-42196	. 37970	-3+185	22
23	. 56670	-50669	45329	-40573	- 36335	- 32557	23
24	-55288	-49193	${ }^{4} 4796$	$\cdots 39012$	-34770	31007	24
25	-53939	-47761	42315	- 37512	-33273	-29530	25
26	-52623	46369	.$_{4085}$	- 36069	${ }^{3} 1840$	-28124	26
27	- 513448	-45019	39501	- 34682	- 30469	-26785	27
28	$\begin{array}{r}\text { - } 50088 \\ .48566 \\ \hline\end{array}$	43708	${ }^{3} 8165$	-33345	-29157	-25509	28
30	-47674	42435 -4199	- 35625	${ }^{3} \mathbf{3} 8083$	- 26700	${ }^{2} \times 24295$	29 30
31	${ }^{46511}$	-39999	-34423	$\cdot 296.46$	$\cdot 25550$	$\cdot 22036$	31
32	45377	${ }^{388} 34$	-33259	-28506	-24450	-20957	32
33	-44270	- 37703	- 32134	$\cdot 27409$	- 3397	-19957	33
34	43191	$\bigcirc 36604$	$\cdots 1048$	-26355	-22390	-19035	34
35	-42137	-35538	-29998	-25342	- 21425	-18129	35
${ }^{36}$	$\stackrel{41109}{ }$	-3+503	$\stackrel{28953}{ }$	${ }^{243} 97$	-20503	-17266	36
37	-40107	-33498	\cdots	$\bigcirc 3430$	-19620	$\stackrel{1644}{ }$	37
${ }^{38}$	-39128	- 32523	-27056	- 22529	-15775	$\cdot 15661$	3^{38}
39 40	$\begin{array}{r}35174 \\ -37243 \\ \hline\end{array}$	- 31575 .30656	-20141	-21602	-17967	$\stackrel{1}{+915}$	39
40	- 37243	- 30650	$\cdot 25257$	829	-17193	-14205	40
41	$\cdot 36335$	$\cdot 29763$	$\stackrel{-2443}{ }$	- 20028	$\stackrel{-16453}{ }$	$\begin{array}{r}\cdot 13528 \\ -1254 \\ \hline 1258\end{array}$	41
42 43	35448 .3454	-2SS90		- 19257 $\cdot 18517$	15744 \cdot $\cdot 15060$	12584 $\cdot 12270$ \cdot	42 43
44	- 33740	27237	$\cdot 22010$	-17SO5	-14417	-11686	44
45	$\cdot 32917$	-26444	$\cdot 21$	-17120	-13796	-11130	45
46	$\cdot 32115$	$\cdot 25674$	-20547	-16461	-13202	-10600	46
47	-31331	\cdots	-19552	-15,28	-12634	-10095	47
48	- 30567	$\stackrel{2}{2} 200$	-19151	-15219	-12090	-09614	48
49	- 29822	$\bigcirc 3495$	-18532	-14634	-11569	-09156	49
50	-29094	-22311	-17905	-14071	-11071	-0¢720	50
60	- 22728	-16973	$\cdot 12693$	-09506	-07129	-05354	60
78	-17755	-12630	-08999	-06422	- 04590	${ }^{\circ} \mathrm{O} 2357$	70
80	-13570	-0939 ${ }^{\circ}$	-06379	\bigcirc	-02956	-2015	So
90	-10836	-06993	-04522	-02931	-1903	-1239	90
100	-08465	${ }^{\circ} \mathrm{O} 203$	-03206	-1950	-01226	-0:760	100

Table III.
Amount of I per Anmum: viz., s. $\mathrm{s}^{\text {. }}$

n	1\%	1 \ddagger \%	$1{ }^{1} \%$	1 ${ }^{\frac{3}{4} \%}$	2\%	$2 \frac{1}{4} \%$	n
1	10000	$1 \cdot 0000$	10000	I ${ }^{\circ} 0000$	I 00000	1 -0000	1
2	2.0100	$2 \cdot 0125$	2.0150	$2 \cdot 0175$	$2 \cdot 0200$	$2 \cdot 0225$	2
3	3.0301	3.0377	3.0452	3.0523	3.0604	3.0680	3
4	4.0604	40756	4 -0909	4* 1062	4*1216	$4 \cdot 1370$	4
5	$5 \cdot 1010$	5'1266	$5 \cdot 1523$	$5^{\circ} 1781$	520.40	5.2301	5
6	$6 \cdot 1520$	$6 \cdot 1907$	6.2296	$6 \cdot 2687$	$6 \cdot 3081$	$6 \cdot 3478$	6
7	7.2135	$7 \cdot 2680$	7.3230	7.3784	$7 \% 4343$	7.4906	7
5	S. 2857	S. 3559	5.432 S	$\checkmark 5075$	8.5830	8.6592	8
9	9.3685	$9 \cdot 4634$	9.5593	9.6564	97546	9.8540	9
10	10.4622	10.5○17	10\%7027	10.8254	10.9497	11.0757	10
11	11.5668	1177139	$11 \cdot 8633$	12.0148	$12 \cdot 1687$	12.3249	1 I
12	12.6825	12.8604	13.0412	13.2251	13.4121	13.6022	12
13	13.8093	$14^{\circ} \mathrm{O} 211$	14.2368	14.4565	$14 \cdot 6803$	14.9083	13
14	14.9474	$15 \cdot 1964$	15.4504	157095	15.9739	$16 \cdot 2437$	14
15	16.0969	16.3563	16.6521	16.9844	17.2934	$17 \cdot 6092$	15
16	$17 \cdot 2579$	17.5912	17×9324	18.2817	18.6393	19.0054	16
17	18.4304	IS'SIII	19.2014	19.6016	20.012 I	20.4330	17
18	19.6147	20.0462	20.4894	20.9446	21.4123	21.8928	18
19	20.8109	21.2968	21.7967	22.3112	22.8406	$23 \cdot 3853$	19
20	$22^{\circ} \mathrm{O} 190$	22.5630	$23 \cdot 1237$	23 '7016	$24 \cdot 2974$	24.9115	20
21	23.2392	23.8450	24.4705	$25 \cdot 1164$	25.7833	26.4720	2 I
22	24.4716	$25^{\circ} 1431$	$25 \cdot 376$	26.5559	27.2990	28.0676	22
23	$25^{\circ} 7163$	26.4574	27.2251	28.0207	$28 \cdot 8450$	29.6992	23
24	26.9735	$27.78 \mathrm{~S}^{1}$	28.6335	$29^{\circ} 5110$	$30 \cdot 4219$	$3 \mathrm{~S} \cdot 3674$	24
25	28.2432	$29^{\prime} 1354$	$30^{\circ} 0630$	$31^{\circ} 0275$	$32^{\circ} \mathrm{O} 303$	$33^{\circ} 0732$	25
26	$29 \cdot 5256$	30.4996	31.5140	32.5704	33.6709	$34 \cdot 8173$	26
27	$30 \cdot 8209$	31.8509	32.9867	34.1404	$35 \cdot 3443$	$36 \cdot 6007$	27
25	$32 \cdot 1291$	33.2794	34.4815	35.7379	$37^{\circ} \mathrm{O} 12$	$3{ }^{5} 42.42$	28
29	33.4504	34.6954	35.9987	$37 \cdot 3633$	$38 \cdot 7922$	$40^{\circ} 2888$	29
30	$34 \cdot 7$ S49	$36 \cdot 1291$	37.5387	$39^{\circ} \mathrm{O} 772$	$40 \cdot 5681$	$42 \cdot 1953$	30
31	$36 \cdot 1327$	37.5So7	$39 \cdot 1018$	$40 \cdot 7000$	$42 \cdot 3794$	$44 \cdot 14.47$	3 I
32	37.49 .4	$39^{\circ} \mathrm{O} 5^{\circ} 4$	$40 \cdot 6883$	$42^{\circ} 4122$	$44^{.2270}$	$46 \cdot 1379$	32
33	33^{8} - 690	$40^{\circ} 5386$	$42 \cdot 2986$	$44^{\prime} 1544$	$46 \cdot 1116$	48.1760	33
34	40.2577	42.0453	43.9331	$45^{\circ} 9271$	$48^{\circ} 033{ }^{\circ}$	50.2600	34
35	416603	$43 \cdot 5709$	45.592 I	47.7308	499945	$52 \cdot 3908$	35
36	$43 \cdot 0769$	$45 \cdot 1155$	$47 \cdot 2760$	$49 \cdot 566 \mathrm{I}$	51.9944	$54 \cdot 5696$	36
	$44 \cdot 5076$	$46 \cdot 6794$	$43^{\circ} 9851$	51.4335	$54^{\circ} \mathrm{O} 443$	56.7974	37
$3{ }^{5}$	45.9527	48.2629	507199	53.3336	56.I149	59.0754	38
39	474123	$49 \cdot 8662$	52.4807	55:2670	58.2372	61.4046	39
40	48.8864	51 '4S96	$54 \cdot 2679$	$57 \cdot 2341$	$60 \cdot 4020$	$63 \cdot 7862$	40
41	$50 \cdot 3752$	$53 \cdot 1332$	56.0819	59.2357	$62 \cdot 6100$	66.2214	41
42	51.790	$54^{\prime 7} 7973$	57.9231	$61 \cdot 2724$	$64 \cdot 8622$	$65 \cdot 7113$	42
43	53.3978	56.4823	59.7920	63.3446	$67 \cdot 1595$	71.2574	43
4.4	54.9318	$58 \cdot 18 S^{3}$	61.6889	65.4532	$69 \cdot 5027$	$73 \cdot 8606$	44
45	56.48 II	59.9157	$63^{* 6142}$	67.5986	7 - ${ }^{\text {S927 }}$	$76 \cdot 5225$	45
46	58.0459	$61 \cdot 6645$	65.568 .4	69.7816	74.3306	79.2443	4^{6}
47	59.6263	63.4354	67.5519	$72^{\circ} 0027$	$76 \cdot 8172$	82.0273	47
48	61.2226	65.22 S 4	69.5652	$74 \cdot 2628$	79.3535	$8_{4} \cdot 8729$	$4{ }^{5}$
49	$62.834{ }^{\prime}$	67.0437	$71 \cdot 6087$	$76 \cdot 5624$	SI. 9400	87.7825	49
50	$64 \cdot 4032$	68.8518	$73 \cdot 6525$	78.9022	84.5794	90.7576	50
60	SI.6697	S8.5745	96:2147	104.6752	114.0515	124*4504	60
70	$100 \cdot 6763$	110.8720	122.3638	135.3308	149.9779	166.5396	70
80	121.6715	$136 \cdot 1188$	$152^{\circ} 7109$	171.7938	1937720	219*1176	80
90	$144 \cdot 8633$	164.7050	IS7.9299	$215 \cdot 1646$	247 - 567	$28+7981$	90
100	170.4514	$197{ }^{\circ} \mathrm{O} 23$	228.8030	266.7518	312.2323	$366 \cdot 8.465$	100

Amount of I per Anmum: viza, s_{n}.

n	212\%	3\%	312\%	4\%	$4 \frac{1}{2} \%$	5\%	n
I	1 -0000	1 '0000	1 -0000	1 .0000	1 0000	1 '0000	1
2	2.0250	$2 \cdot \mathrm{O} 00$	2.0350	$2 \cdot 0400$	2.0450	$2 \cdot 500$	2
3	3.0756	3.0909	$3 \cdot 1062$	$3 \cdot 1216$	3'1370	3'1525	3
4	4.1525	$4 \cdot 1536$	4.2149	+ 2465	+2782	4.3101	4
5	$5 \cdot 263$	5•3091	5'3625	5.4163	5.4707	$5 \cdot 5256$	5
6	$6 \cdot 3877$	6.4684	$6 \cdot 5502$	6.6330	67169	6.Sol9	6
7	7.5474	7.6625	77794	$7 \% 953$	8.0192	S. 1420	7
s	$8 \cdot 7361$	8.8923	9.0517	9:2142	$9 \cdot 3$ Soo	9.5491	s
9	9.9545	$10^{\prime} 1591$	$10 \cdot 3685$	$10 \cdot 5525$	10.5021	11.0266	9
10	11.2034	11.4639	117314	12.0061	$12 \cdot 2882$	$12 \cdot 5779$	10
11	12.4835	12.8078	$13^{\prime} 1420$	13.4864	${ }_{13} 3^{4} 412$	$14 \cdot 2068$	11
12	13.7956	14.1920	14.6020	15.0258	15.4640	$15^{\prime} 9171$	12
13	15.1404	15.6178	16.1130	$16 \cdot 6268$	17.1599	17.7130	13
14	16.5190	${ }_{17} \cdot{ }^{\circ} \mathrm{OS}_{3}$	$17 \cdot 6770$	18.2919	18.9321	19.59	14
15	17.9319	15.5959	19.2957	20.0236	${ }^{20} 7841$	21.5786	15
16	19.3 Soz	$20^{\prime} 1569$	20.9710	$21 \cdot 8245$	$22 \cdot 7193$	$23 \cdot 6575$	16
17	$20 \cdot 8647$	217616	$22^{\prime} 7050$	$23 \cdot 6975$	24.7417	$25 \cdot 5404$	17
18	$22 \cdot 3863$	23.4144	24.4997	$25^{\circ} 6454$	$26 \cdot 8551$	${ }_{25} \cdot 1324$	18
19	23.9460	${ }^{25.1169}$	${ }^{26 \cdot 3572}$	${ }^{27} \cdot 6712$	29.0636	30.5390	19
20	$25^{\circ} 5447$	$26 \cdot 8704$	$28 \cdot 2797$	${ }^{29} \cdot 7781$	31.3714	33.0660	20
21	${ }_{2}^{27.18}$	28.676	$30 \cdot 26$	31.9692	$33^{\prime} 7831$	35.7193	21
22	$25 \cdot 8629$	$30 \cdot 5368$	$32 \cdot 3289$	34.2480	${ }^{36} \cdot 3034$	3>.5052	22
23	$3{ }^{\circ} \cdot 5844$	$3^{2} \cdot 4529$	$3+4604$	$36 \cdot 6179$	$3^{8.9370}$	41.4305	23
24	$32 \cdot 3490$	$3+4265$	36.6665	$39^{\circ} \mathrm{O} 26$	41.6592	$44 \cdot 5020$	24
25	34.1578	$36^{\circ} 4593$	38.9499	${ }^{11} 6459$	44.5652	47 '7271	25
26	36.0117	38.5530	$41 \cdot 3131$	44.3117	47.5706	51'1135	26
27	37.9120	$40 \cdot 7096$	$43 \cdot 7591$	47.0842	$50 \cdot 7113$	54.6691	27
28	39.595	42.9309	46.2906	49.9676	$53 \cdot 9933$	58.4026	25
29	$41 \cdot 8563$	$45^{\prime 2} 2189$	48.9108	52.9663	57.4230	$62 \cdot 3227$	29
30	$43 \cdot 9027$	47.5754	51'6227	56.0849	61*0071	66.4385	30
31	$46 \cdot 0003$	50.0027	54.4295	59.3283	64.7524	$70 \cdot 7608$	31
32	$48 \cdot 1503$	$52 \cdot 5028$	57.3345	${ }^{62} \cdot 7015$	68.6662	75'2988	32
33	50.3540	55.0778	60.3412	${ }^{66} \cdot 2095$	72.7562	80.063 ${ }^{\text {d }}$	33
34	52.6129	57.7302	63.4532	69.8579	77.0303	850.0670	34
35	$54 \cdot 9282$	60.	6740	$73 \cdot 6522$	814966	$90 \cdot 3203$	35
36	57.3014	$6{ }^{6} \cdot 2759$	$70 \cdot 0076$	77.5983	S6. 10.40	$95 \cdot 363$	36
37	59.7339	$66^{6} 1742$	73.4579	81.7022	${ }_{91} 1^{\circ} 0413$	101.6281	
38	${ }_{62} 62.273$	69.1594	77.0289	85.9703	${ }^{96} \cdot 133^{8}$	1077095	3^{3}
39	64.7830	72.2342	So' 7249	90.4091	101.4644	$114^{\circ} \mathrm{O} 950$	39
40	67.4026	$75 \cdot 4013$	84.5503	$95^{\circ} \mathrm{O25} 5$	107 © 303	$120 \cdot 7998$	40
41	$70 \cdot 0{ }^{\text {P76 }}$	78.6633	SS.5095	99•S265	1128467	127 '839	41
42	72.8398	82.0232	$92 \cdot 60$	$104 \cdot 8196$	118.9248	135.2318	42
43	75.6608	85.4839	96.8486	110.0124	${ }^{125}$ '2764	11^{14}-9933	43
44	78.5523	89.0454	1012383	115.4129	131.9138	${ }^{151.1430}$	44
45	81.5161	92'7199	$1057{ }^{\text {7 }} 17$	1210294	${ }^{1} 8.8500$	${ }^{159}{ }^{\prime} 7002$	45
46	84.5540	96.5015	110.4840	126.8706	$146 \cdot 0982$	168.6852	46
47	87.6679	100.3965	115.3510	$132^{\circ} 9454$	153.6726	178.1194	47
48	90.8596	104.4884 108.5406	120.3583 125.6018 13.	139.2632 145837 158			
49 50	$94 \cdot 1311$ 97 97	108.5406 112.7969	125 130.6018 130979	$\begin{aligned} & 145.8337 \\ & 152.6671 \end{aligned}$	$\begin{aligned} & 169.8994 \\ & 178.5030 \end{aligned}$	$\begin{aligned} & 198 \cdot 4267 \\ & 209 \cdot 3480 \end{aligned}$	49 50
60	135.9916	163.0534	$196 \cdot 5169$	${ }^{237}$ '9907	289.4980	353.5837	60
70	185.2841	230.5941	28S 9379	364.2905	$461 \cdot 8697$	580.5285	70
80	2483827	321.3630	4193068	551.2450	729.5577	971.2285	8o
90	329.1542	443.3489	6032050 862.617	827.9833	$1145^{\circ} 2690$ 170.850	$1594 \cdot 0073$	90
100	$4.32 \cdot 5486$	$607 \cdot 2877$	$862 \cdot 6117$	1237 '6237	$1790 \cdot 8560$	2610.0252	1 co

Table IV.
Present Value of I per Annum: viz., $a_{\text {Fil }}$.

n	I \%	I $\frac{1}{4} \%$	I 1%	13\%	2\%	24\%	n
1	0.9901	0.9577	0.9852	0.9828	0.9 SO 4	0.9780	1
2	1.9704	1 9631	I'9559	I'9.487	1.9416	1.9345	2
3	2.9 .410	29265	29122	$2 \cdot \mathrm{SySo}$	$2 \cdot 8839$	$2 \cdot 8699$	3
4	3.9020	$3 \cdot 875$	$3 \cdot 8544$	$3 \cdot 5309$	3.8077	3'7847	4
5	4.8534	$4 \cdot 5178$	47826	47479	47135	4.6795	5
6	5.7955	5.7460	$5 \cdot 6972$	$5 \cdot 6490$	$5^{\cdot 6014}$	5.5545	0
7	$6 \cdot 72 \mathrm{Sz}$	6.6627	0.5982	$6 \cdot 5346$	6.4720	6.4102	7
S	7.6517	$7.56 \mathrm{~S}_{1}$	7.4859	7.4051	73255	$7 \cdot 2472$	8
9	S. 5660	5.4623	S.3605	S:2605	S.1622	S.0657	9
10	9.4713	93455	$9^{\circ} 2222$	$9^{*} 1012$	S.9826	S.8662	10
I I	10.3676	10.217S	10.0711	9.9275	97868	$9 \cdot 6491$	11
12	11.2551	11.0793	10.9075	10*7395	10.5753	10.4148	12
13	12.1337	11.9302	117315	11 53376	11.3484	11.1636	13
14	13.0037	12.7706	12.5434	$12 \cdot 3220$	$12 \cdot 1062$	$11 \cdot 8959$	14
15	$13 \cdot 8651$	$13 \cdot 6005$	13.343^{2}	13*0929	$12 \cdot 8493$	$12 \cdot 6122$	15
16	14*7179	14.4203	14.1313	$13 \cdot 8505$	$13 \cdot 5777$	13*3126	16
17	15.5623	I 5.2299	14.9076	14.5951	14.2919	13.9977	17
18	16.3983	16.0295	15.6726	15.3269	149920	14.6677	I 8
19	17.2260	16.8193	16.4262	16.0461	15.6785	$15 \cdot 3229$	19
20	$1 S^{\circ} 0456$	17•5993	$17 \cdot 1686$	16.7529	16.3514	15.9637	20
21	IS.8570	IS 3697	17.9001	17.4475	170112	16.5904	21
22	19.6604	19*1306	18.6208	$1)^{\text {¢ }} 1303$	17.6580	17.2034	22
23	20.4558	19.8820	19.3309	IS•SOI2	I $8 \cdot 2922$	$17 \cdot 8028$	23
24	21*2434	20.6242	20.0304	19.4607	$18 \cdot 9139$	$18 \cdot 3890$	24
25	22.0232	21.3573	20.7196	20.10S8	19.5235	IS*9624	25
26	22.7952	22.0813	21.3986	$20 \cdot 7457$	20.1210	19.5231	26
27	23.5596	22.7963	$22 \cdot 0676$	21.3717	20.7069	20.0715	27
23	2.43164	23.5025	22.7267	21.9870	$21 \cdot 2813$	$20 \cdot 6078$	28
29	25.0658	$24 \cdot 2000$	23.3761	$22 \cdot 5916$	$21 \cdot 8444$	21.1323	29
30	$25 \cdot 8077$	24.8889	$24^{\circ} \mathrm{OI} 5^{8}$	23.1858	$22 \cdot 3965$	$21 \cdot 6453$	30
31	$26 \cdot 5423$	25.5593	24.6461	23.7699	22.9377	22.1470	31
32	27.2696	$26 \cdot 2.15$	$25 \cdot 2671$	$24 \cdot 3439$	23.4683	22.6377	32
33	27.9897	26.9050	25.8790	$24^{*} 9080$	23.9886	23.1175	33
34	$28 \cdot 7027$	27.5605	26.4817	25.4624	24.4986	23.5868	34
35	$29 \cdot 4086$	28:2079	27.0756	$26 \cdot 0073$	24.9986	$24^{\circ} 0458$	35
36	30.1075	$28 \cdot 8473$	$27 \cdot 6607$	$26 \cdot 5428$	$25 \cdot 4888$	24.4947	36
37	30.7995	29.4788	28.2371	27.0690	25.9695	24.9337	37
3 S	31.4547	30.1025	$28 \cdot 5051$	27.5863	$26 \cdot 4406$	25.3630	38
39	32.1630	$30 \cdot 7185$	29:3646	$28 \cdot 0946$	$26 \cdot 9026$	$25 \cdot 7829$	39
40	$32 \cdot 8347$	31.3269	$29^{\circ} 9158$	28.5942	27.3555	26.1935	40
41	33.4997	31.9278	30.4590	$29^{\circ} 0852$	27.7995	$26 \cdot 5951$	41
42	34.1581	$32 \cdot 5213$	30.9941	29.5678	28.2348	26.9879	42
43	$34 \cdot 8100$	33.1075	$31 \cdot 5212$	$30^{\circ} \mathrm{O} 42 \mathrm{I}$	28.6616	27.3720	43
44	$35 \cdot 4555$	33.6864	32.0406	$30 \cdot 5082$	$29^{\circ} \mathrm{OSoo}$	27.7477	44
45	36.0945	$34^{\prime} 2582$	32.5523	30.9663	29.4902	2S*II5I	45
46	$36 \cdot 7272$	$34 \cdot$ S229	33.0565	31.4165	$29^{\circ} \mathrm{S} 923$	25.4744	46
47	$37 \cdot 3537$	35:3806	33.5532	31.8589	30:2866	28.8259	47
48	37.9740	$35^{\circ} 9315$	$34^{\circ} \mathrm{O} 426$	32.2938	$30 \cdot 6731$	29.1695	48
49	38.5881	36.4755	$34 \cdot 52.47$	$32 \cdot 7212$	$3 \mathrm{I} \cdot 052 \mathrm{I}$	29.5057	49
50	$39 * 1961$	$37^{\circ} \mathrm{OI} 29$	$34 * 9997$	$33 \cdot 1412$	314236	$29 \cdot 8344$	50
60	$44 * 9550$	42.0346	$39 \cdot 3 \mathrm{SO} 3$	36.9640	34.7609	32.7490	60
70	$50 \cdot 1685$	$46 \cdot 4697$	$43^{\circ} \mathrm{I} 549$	$40 \cdot 1779$	$37 \cdot 4986$	$35^{\circ} \mathrm{OS} 21$	70
So	54.8882	$50 \cdot 3867$	$46 \cdot 4073$	$42 \cdot 8799$	$39^{\circ} 7445$	$36 \cdot 9.498$	80
90	59.1609	$53 \cdot 8461$	$49 \cdot 2099$	$45^{\circ} 1516$	41.5869	$38 \cdot 4449$	90
100	$63 \cdot 0289$	$56 \cdot 9013$	$51 \cdot 6247$	$47^{\circ} 0615$	43.0984	$39 \cdot 6417$	100

Present Value of I per Annum: viz., a_{n}.

n	2 ${ }_{2}^{1}$ \%	3\%	32\%	4\%	42\%	5\%	n
1	0.9756	0.9709	0.9662	0.9615	0.9569	0.952 .4	1
2	$1 \cdot 9274$	1.9135	I-'997	I.3361	1-S727	I•594	2
3	2.8560	$2 \cdot 8286$	$2 \cdot$-S016	2.7751	2.7490	2.7232	3
4	37620	3.7171	$3 \cdot 6731$	$3 \cdot 6299$	3.5875	3.5460	4
5	$4 \cdot 6458$	4.5797	4.5151	4.45 IS	4.3900	4.3295	5
6	$5 \cdot 508 \mathrm{I}$	5.4172	$5 \cdot 3286$	$5 \cdot 2421$	5•559	5.0757	5
7	$6 \cdot 3494$	$6 \cdot 2303$	$6 \cdot 1145$	$6 \cdot 0021$	$5 \cdot 8927$	5.7864	7
8	$7 \cdot 1701$	7×197	6.8740	6.7327	$6 \cdot 5959$	6.4632	8
9	7.9709	$7 \cdot 7561$	$7 \cdot 6077$	7.4353	$7 \cdot 2688$	$7 \cdot 1078$	9
10	$8 \cdot 752 \mathrm{I}$	8.5302	8.3166	S•1109	7 9127	77217	10
II	9-5142	9.2526	9.0016	$8 \cdot 7605$	8.5289	S.3064	11
12	10.2578	9.9540	$9 \cdot 6633$	9.3851	9.1186	S. 8633	12
13	10.9532	10.6350	$10 \cdot 3027$	9.9856	$9 \cdot 6829$	$9 \cdot 3936$	13
14	11.6909	11.2961	$10 \cdot 9205$	$10 \cdot 5631$	10.2228	9.8986	14
15	123314	11.9379	II 15174	II'Iİ4	$10 \cdot 7395$	10.3797	15
16	13.0550	12.5611	12.0941	11.6523	11.2340	${ }_{10} 8_{37} 8$	16
17	13.7122	13.1661	12.6513	$12 \cdot 1657$	11.7072	11.2741	17
IS	14.3534	13.7535	13.1897	12.6593	12.1600	I I $\cdot 6$ S9 6	18
19	14.9789	14.3238	13.7098	$13 \cdot 1339$	$12 \cdot 5933$	12.0853	19
20	15.5892	14.8775	14.2124	13.5903	$13^{\circ} 0079$	12.4622	20
21	16.1845	15.4150	14.69 So	14.0292	13.4047	12.8212	21
22	16.7654	15.9369	15.1671	14.4511	13.7844	13.1630	22
23	17.3321	16.4436	15.6204	14.5568	14.1478	13.4886	23
24	17.8550	16.9355	16.0584	15.2470	14.4955	13.7986	24
25	18.42.44	17.4131	16.4815	15.6221	$14 \cdot{ }^{\text {S }}$ 2 8_{2}	14.0939	25
26	18.9506	17.8768	16.S904	15.9828	15.1466	14.3752	26
27	19.4640	18.3270	$17 \cdot 2854$	$16 \cdot 3296$	15.4513	14.6430	27
28	19.9649	18.7641	17.6670	16.6631	15.7429	14.8981	2 S
29	20.4535	$19 \cdot 1885$	18.0358	16.9837	16.0219	15.1411	29
30	20*9303	19.6004	I8.3920	17.2920	16.2889	15.3725	30
31	21-3954	20.0004	18.7363	17.5885	16.5444	15.592 S	31
32	21.8492	$20 \cdot 3588$	19.0689	17.8736	16.7859	$15 . \mathrm{So27}$	32
33	22.2919	$20 \cdot 7658$	19.3902	IS.1476	17.0229	16.0025	33
34	22.7238	21.1318	$19 \cdot 7007$	18.4112	17.2468	16.1929	34
35	$23 \cdot 1452$	21.4872	20.0007	$18 \cdot 6646$	17.4610	16.3742	35
36	23.5563	$21 \cdot S_{323}$	20.2905	$18 \cdot 9083$	$17 \cdot 6660$	16.5469	36
37	23.9573	$22 \cdot 1672$	$20 \cdot 5705$	19.1426	17.8622	16.7113	37
38	24.3486	22.4925	$20 \cdot 8411$	19.3679	IS.0500	16.S679	38
39	24.7303	$22 \cdot 5082$	21'1025	19.5845	IS 2297	$17^{\circ} 0170$	39
40	$25 \cdot 1028$	23.1148	21*3551	19.7928	IS:4016	$17 \cdot 1591$	40
41	25.4661	23.4124	21.5991	19.9931	$15^{5} 561$	17.2944	41
42	$25 \cdot 8206$	23.7014	2 I ¢ 349	$20 \cdot 1856$	18.7235	17.4232	42
43	26.1664	23.9819	22.0627	20.370S	18.8742	17.5459	43
44	$26 \cdot 5038$	24.2543	$22 \cdot 2828$	$20 \cdot 5488$	$19^{\circ} \mathrm{O} \mathrm{IS}_{4}$	17.6628	44
45	26.8330	$24^{\circ} 5187$	22.4955	20'7200	$19^{\circ} 1563$	17.7741	45
46	27.1542	24.7754	$22 \cdot 7009$	$20 \cdot 8847$	19.2884	$17 \cdot 8801$	46
47	27.4675	$25^{\circ} \mathrm{O} 247$	$22 \cdot \mathrm{~S} 994$	21.0429	19.4147	17.9810	47
48	27.7732	$25 \cdot 2607$	$23^{\circ} 0912$	21.1951	19.5356	IS 0772	48
49	28.0714	$25 \cdot 5017$	23.2766	21.3415	19.6513	IS. I687	49
50	28.3623	$25^{\circ} 7298$	23.4556	21.4822	19.7620	I $8 \cdot 2559$	50
60	$30 \cdot 9087$	$27 \cdot 6756$	24.9447	$22 \cdot 6235$	20.6380	18.9293	60
70	32.8979	29^{11234}	26.0004	23.3945	21.2021	19.3427	70
8o	34.4518	$30 \cdot 2008$	26.74 SS	23.9154	$21 \cdot 5653$	19.5965	80
90	35.6658	$33^{\circ} \mathrm{OO24}$	27.2793	24.2673	21.7992	19.7523	90
100	36.6141	31.5989	$27 \cdot 6554$	24.5050	21.9498	19.8479	100

Table V.
Annuity that I will purchase: viz., $\left(a_{n \pi}\right)^{-1}$.

n	1\%	I ${ }_{4} \%$	I 1 \%	I ${ }_{4}^{\frac{3}{4} \%}$	2\%	21\%	n
1	1 -010000	I 012500	1.015000	1.017500	1 020000	1.022500	1
2	- 507512	0.509394	0.511278	0.513163	0.515050	0.516938	2
3	. $3+0022$. $3+1701$	$\cdot 3+33 S^{3}$	$\cdots 345067$	$\cdot 346755$	$\cdot 348445$	3
4	-256281	$\because 257861$	-25944	-261032	-262624	-264219	4
5	-206040	-207562	-209089	-210621	-212158	-213700	5
6	-17254 ${ }^{\text {d }}$	'174034	-175525	${ }^{1} 77023$	-178526	-180035	6
7	-145628	-1500\$9	-151556	$\cdot 153031$	-154512	${ }^{1} 156000$	7
8	-130690	-132133	-133584	-135043	- 136510	${ }^{1} 137985$	8
9	- 116740	-118171	- 119610	-12105	-122515	-123982	9
10	-105582	-107003	-108434	-109875	-111327	-112788	10
11	-096454	-09786S	-099294	-100730	-102178	-103637	11
12	-08S849	-090258	-0916So	-093I 14	-094560	-096017	12
13	-0S2415	- 0 S3S2I	- 0 S5240	-086673	-OSSIIS	-059577	13
14	-076901	$\cdot .78305$	-079723	-081156	- 0 S2602	- 00_{4062}	14
15	-072124	-073526	-074944	. 076377	-077S25	-\%79289	15
16	-067945	-069347	-070765	-072200	-073650	-075117	16
17	-06425S	-065660	-0670So	- 068516	-069970	$\bigcirc 071440$	17
18	-060982	-062385	-063806	-065245	-066702	-068177	18
19	-058052	-059455	-660\$78	.06232I	-063782	-065262	19
20	-055415	-056820	${ }^{\circ} \mathrm{O} 8246$	-059691	-06II57	-062642	20
21	-053031	-054438	-055865	-057315	${ }^{\circ} 058785$	-060276	21
22	-050864	-052272	-053703	-055156	-05663I	-05812S	22
23	-048886	-050297	-051731	.053188	-054608	-056171	23
24	-047073	$\cdot{ }^{\circ} \mathrm{4} 8487$	-0+9924	-051386	-052871	-0543 ${ }^{\text {So }}$	24
25	-045407	-046822	$\cdot 048263$	- 049730	-051220	-052736	25
26	-043-69	-045287	$\cdot 046732$	-048203	-049699	.051221	26
27	$\bigcirc 042446$	$\cdot 043867$	-045315	-046791	-048293	-049822	27
28	-041124	-0+2549	-044001	-045482	-046990	${ }^{\circ} \mathrm{O} 85525$	28
29	-039895	-041322	-042779	-044264	$\cdot 045778$	$\cdot 04732 \mathrm{I}$	29
30	${ }^{\circ} \mathrm{O} 38748$	-040179	.041639	.043I30	-044650	-046199	30
31	-037676	-039109	-040574	-042070	$\bigcirc 043596$	-045153	31
32	-036671	-038108	- 039577	-041078	-04261 1	- $0+4174$	32
33	-035727	-037168	-038641	. 040148	$\bigcirc 041687$	-043257	33
34	-034840	-036284	$\bigcirc 37762$	-039274	-040S19	$\bigcirc 042397$	34
35	-034004	-035451	- 036934	. 038451	$\cdot 040002$. 041587	35
36	-033214	-034665	-036152	-037675	-039233	-040825	36
37	${ }^{\circ} \mathrm{O} 2468$	-033923	-035414	-036943	-03S507	-040106	37
38	-031761	-033220	-03+716	-036250	${ }^{\circ} \mathrm{O} 37 \mathrm{~S} 2 \mathrm{I}$	- 39428	38
39	-031092	-032554	- 34055	- 35594	-037171	$\cdot 038785$	39
40	- $030+56$	-031921	-033427	-034972	-036556	${ }^{\circ} \mathrm{O} 38177$	40
41	-029851	-031321	-032831	-034382	-035972	-037601	41
42	-029276	-030749	-032264	-033821	-035417	- 037054	42
43	-02S727	-030205	-031725	-033287	- $3+890$	- 36534	43
44	-028204	-029686	$\bigcirc{ }^{\circ} \mathrm{O} 1210$	-032778	- $3+388$	- 03639	4.
45	. 027705	-029190	- 30720	-032293	-033910	-035568	45
46	-027228	-028717	-030251	-031830	-033453	-035119	46
47	-026771	$\cdot 028264$	- 029803	- 031388	-033018	$\cdot 03+691$	47
48	-026334	-027831	-029375	-030966	-032602	-0342S2	48
49	-025915	-027416	-028965	-030561	-032204	-033892	49
50	-025513	-027018	-028572	-030174	-031823	-033518	50
60	-022244	-023790	-025393	-027053	-028768	-030535	60
70	-19933	-021519	$\bigcirc 023172$	-024859	-026668	$\bigcirc{ }^{-2} 8505$	70
So	-18219	-19847	-021548	-023321	-025161	-027064	So
90	-116903	-18571	-020321	-222148	-024046	$\cdot 026011$	90
100	- 015866	-017574	-01937 1	, 021249	-023203	. 025226	:00

Annuity that I will purchase: viz., $\left(a_{\text {n }}\right)^{-1}$.

n	2 5 \%	3\%	31\%	4%	42\%	5\%	n
1	1.025000	1.030003	1.035000	1.040000	1.045000	1.050000	1
2	0.518527	0.522611	0.526400	$0 \cdot 530196$	0.533998	0.53-805	2
3	350137	'353530	-356934	-360349	- 363773	-307209	3
4	-265SIS	-269027	$\cdot 272251$	-275490	$\cdot 275744$	-2S2012	4
5	-215247	- 218355	-22148I	$\cdot 224627$	-227792	-230975	5
6	-181550	- S $_{4} 459$ S	- IS766S	-190762	-193878	-197017	6
7	-157495	-160506	-163544	-166610	-169701	-172S20	7
S	- 139467	- 142456	-145477	-14S52S	-151610	-154722	8
9	-125457	- 12 S 434	-131446	-134493	-137574	-140690	9
10	- II4259	-117231	-120241	-123291	-126379	-129505	10
I I	-105106	'10So77	'IIIO92	-114149	- I 1 7 2.4 S	-1203S9	1 I
12	-097487	-100.462	-1034 ${ }^{\text {S }}$	-106552	-109666	- 112825	12
I 3	-091048	-094030	-097062	-100144	-103275	-106456	13
14	- OS5537	- $0^{-S S 526}$	-091571	-094669	-097820	-101024	14
15	-080766	-083767	-086825	- 0 S994 I	-093114	-096342	15
16	-076599	. 07961 I	- 0 S26S5	- O 5820	- OS90I5	'092270	16
17	-07292S	. 075953	-079043	- OS2199	- OS54 IS	- OSS699	17
15	-069670	-072709	-075S17	-07S993	-OS2237	- OS5546	IS
19	.06676I	-069814	-072940	-076I39	-079407	-OS2745	19
20	-064147	-067216	-070361	-073582	-076876	- OSO243	20
21	.061787	.06.4872	-068037	-071280	.074601	-077996	21
22	-059647	-062747	-065932	-069199	. 072546	-07597I	22
23	. 057696	-060SI4	- 064019	-067309	-0706S2	. 074137	23
24	. 055913	-0590.47	. 062273	. 065587	- 068987	-072471	24
25	-054276	-05742S	.060674	.064012	. 067439	-070952	25
26	-052769	-05593S	-059205	. 062567	-06602 I	-069564	26
27	. 051377	- 054564	. 057852	. 061239	-064719	-068292	27
2 S	-05008S	.053293	-056603	.060013	-063521	-067123	28
29	-0.4S891	.052115	-055445	- 058880	-062415	. 066046	29
30	-047778	-051019	-054371	-057830	. 061392	.06505I	30
31	-0.46739	-049999	.053372	- 056855	-060443	. 064132	31
32	-0.4576S	-049047	- 052442	- 055949	-059563	-0632So	32
33	-044S59	-048156	-051572	. 055104	-058745	-062490	33
34	- 044007	-047322	- 050760	- 054315	- 057982	-061755	34
35	-043206	-046539	- 049998	- 053577	. 057270	.061072	35
36	. 042.452	-045SO4	. 0.49284	-052SS7	-056606	-060434	36
37	-0.41741	-045112	-04S613	- 052240	- 055984	-059S40	37
38	. 041070	-0.44459	-047982	. 051632	- 055402	- $0592 \mathrm{~S}_{4}$	3 S
39	. 040436	- 43844	-047388	-051061	- 0544_{56}	- 58865	39
40	. 039836	-043262	-046827	.050523	- 054343	-05827S	40
41	-03926S	-042712	-046298	'050017	${ }^{\circ} \mathrm{0} 33862$	-057822	4 I
42	- 3 S729	. 0.42192	- 045798	-049540	-053409	- 057395	42
43	-03S217	-0.4169S	-045325	-049090	- 052982	-056993	43
44	-037730	-041230	-044S7S	-0.4S665	. 052581	- 056616	44
45	'037268	. $0407{ }^{\text {S }}$	-044453	-0.4S262	-052202	-056262	45
46	-036827	-040363	. 04.4051	- $0_{47} \mathrm{SS}_{2}$	-051S45	- 05592 S	46
47	-036407	-039961	-043669	- 047522	-051507	-055614	47
48	-036006	-039578	-043306	$\cdot 47181$	-051189	-0553IS	48
49	-035623	-039213	. 042962	-046S57	-050S87	- 055040	49
50	-035258	-03SS65	-042634	-046550	-050602	- 054777	50
60	-032353	-036133	-040089	-044202	-0.48454	-052828	60
70	. 030397	- $3+337$	-038461	- 042745	-047165	.051699	70
So	-029026	-033112	-0373S5	. 041 SI 4	.046371	. 051030	80
90 100	$\cdot{ }^{\circ} \mathrm{O} 2 \mathrm{SO} 38$	-032256	-03665S	. 041208	-045573	-050627	90
100	-027312	-031647	- 36159	- 040 SoS	- 045558	$\cdot 050383$	100

TAbid VI.
Compound Interest Constrants.

i	d	v	j (2)	$j(5)$	δ	$\log _{10}(\mathrm{I}+i)$
- 0100	-00990I	$\cdot 990099$	-009975	-009963	-009950	-00432I4
. 0125	- 12346	${ }^{9} 987654$. 012461	- 012442	- 12422	-0053950
- $\mathrm{O} 5^{\circ}$	- 14.1778	.9S5222	- 014944	- Oi4916	- O .48 SS 9	-0064600
'0175	-O17199	-9S2SoI	-017424	- 0173 S6	-017349	-0075344
-0200	- $01960 S$	$\cdot 9 \mathrm{So} 392$	- 019901	- 19852	$\cdot 019 \mathrm{So3}$	-0086002
-0225	. 022005	-977995	. 022375	-022312	-022251	-0096633
.0250	-024390	'975610	-024 $8_{4} 6$	-024769	-024693	-0107239
$\cdot 0300$	-029126	$\cdot 970874$	-02977S	-029668	-029559	- $\mathrm{O} 2 \mathrm{~S}_{37}$
-0350	-033Si6	-966IS4	-034699	- 034550	-O34401	-0149403
0.400	-03S462	-96153S	-039608	-039414	-03922 I	-0170333
-0450	-043062	.95693S	- $04+505$	-044250	-0+4017	- 0191163
$\cdot 0500$	$\cdot 047619$	$\cdot 952381$	-049390	$\cdot 049089$	$\cdot 0.45790$	-0211893

Table VII.
Values of $\frac{i}{j}$ for giren Values of i and p.

i	$p=2$	$p=4$	$p=12$	$p=\infty$
-0100	1.00249	I 000373	$1{ }^{\circ} 0045^{\circ}$	I 00499
-0125	1.00311	I 00466	I $\cdot 00566$	$1{ }^{\circ} 00624$
-0150	I 00373	I 000560	$1 \cdot 006 S_{5}$	I 00074 S
. 0175	I $\cdot 00+36$	$1 \cdot 00653$	1-00797	$1.00 \$ 73$
-0200	I $\cdot 00497$	1.00748	1.00912	1000997
-0225	I 00560	I $00 \mathrm{~S}_{4} 1$	I.01024	10112 I
-0250	I 00621	I 00933	1.01141	I 0 O12 45
-0300	$1{ }^{\circ} 00744$	1-011 ${ }^{\text {S }}$	1.01365	1×10193
-0350	I -0086́ 7	1-01303	1.01594	101740
${ }^{\circ} \mathrm{O}+\mathrm{CO}$	I 00990	I-OI4SS	I.OIS20	I. 019 S 7
-0450	I-01113	1.01672	1-020.46	1×02233
-0300	I*01235	I ${ }^{\text {OIS }} 56$	1.02271	I 024 ¢ ${ }^{\text {So }}$

PRINTED By
CHARLES AND EDWIN LAYTON, 56, FARRINGDON sTREET, LONDON, E.C

$$
x \rightarrow \cos x
$$

UNIVERSITY OF CALIFORNIA LIBRARY Los Angeles

This book is DUE on the last date stamped below

UC SOUTHERN REGIONAL LIBRARY FACILITY

AA 0011677127

[^0]: * In practical calenkation by the arithmometer the first prineipal-repayment, that is 91.32155 , would be set up on the slide, and the differences would be mechanically idded, so that this colama of differences wonld not be taken out separately.

[^1]: *This may be seen graphieally by drawing a straight line to represent the continuous annuity and concentrating the total payments for successive years, $\frac{1}{2}-1 \frac{1}{2}$, $1_{2}-\underline{-1} \frac{1}{2}, \mathcal{\&}$ e., at the middle points of these years, i.e., at the ends of $1,2, \& \in$., years.

[^2]: * The correspouding gromeral formula, based on u given values, is known as Jagrangre's Jmerpmation formula, and ran he deduced at once (when ins form is hnown) lyy assmuming that $i=\sum_{i} D_{1}\left(u-u_{1}\right) \ldots\left(u-u_{r-1}\right)\left(u-u_{r+1}\right) \ldots\left(u-u_{n}\right)$ and puming $u=u_{11}, u_{1}$, dec., successively to determine the constants.- See Text Book, I'art II, p. 43 S.

